Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ello1mpt Structured version   Visualization version   GIF version

Theorem ello1mpt 14181
 Description: Elementhood in the set of eventually upper bounded functions. (Contributed by Mario Carneiro, 26-May-2016.)
Hypotheses
Ref Expression
ello1mpt.1 (𝜑𝐴 ⊆ ℝ)
ello1mpt.2 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
ello1mpt (𝜑 → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚)))
Distinct variable groups:   𝑥,𝑚,𝑦,𝐴   𝐵,𝑚,𝑦   𝜑,𝑚,𝑥,𝑦
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem ello1mpt
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ello1mpt.2 . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
2 eqid 2626 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
31, 2fmptd 6341 . . 3 (𝜑 → (𝑥𝐴𝐵):𝐴⟶ℝ)
4 ello1mpt.1 . . 3 (𝜑𝐴 ⊆ ℝ)
5 ello12 14176 . . 3 (((𝑥𝐴𝐵):𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → ((𝑥𝐴𝐵)‘𝑧) ≤ 𝑚)))
63, 4, 5syl2anc 692 . 2 (𝜑 → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → ((𝑥𝐴𝐵)‘𝑧) ≤ 𝑚)))
7 nfv 1845 . . . . . 6 𝑥 𝑦𝑧
8 nffvmpt1 6158 . . . . . . 7 𝑥((𝑥𝐴𝐵)‘𝑧)
9 nfcv 2767 . . . . . . 7 𝑥
10 nfcv 2767 . . . . . . 7 𝑥𝑚
118, 9, 10nfbr 4664 . . . . . 6 𝑥((𝑥𝐴𝐵)‘𝑧) ≤ 𝑚
127, 11nfim 1827 . . . . 5 𝑥(𝑦𝑧 → ((𝑥𝐴𝐵)‘𝑧) ≤ 𝑚)
13 nfv 1845 . . . . 5 𝑧(𝑦𝑥 → ((𝑥𝐴𝐵)‘𝑥) ≤ 𝑚)
14 breq2 4622 . . . . . 6 (𝑧 = 𝑥 → (𝑦𝑧𝑦𝑥))
15 fveq2 6150 . . . . . . 7 (𝑧 = 𝑥 → ((𝑥𝐴𝐵)‘𝑧) = ((𝑥𝐴𝐵)‘𝑥))
1615breq1d 4628 . . . . . 6 (𝑧 = 𝑥 → (((𝑥𝐴𝐵)‘𝑧) ≤ 𝑚 ↔ ((𝑥𝐴𝐵)‘𝑥) ≤ 𝑚))
1714, 16imbi12d 334 . . . . 5 (𝑧 = 𝑥 → ((𝑦𝑧 → ((𝑥𝐴𝐵)‘𝑧) ≤ 𝑚) ↔ (𝑦𝑥 → ((𝑥𝐴𝐵)‘𝑥) ≤ 𝑚)))
1812, 13, 17cbvral 3160 . . . 4 (∀𝑧𝐴 (𝑦𝑧 → ((𝑥𝐴𝐵)‘𝑧) ≤ 𝑚) ↔ ∀𝑥𝐴 (𝑦𝑥 → ((𝑥𝐴𝐵)‘𝑥) ≤ 𝑚))
19 simpr 477 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝑥𝐴)
202fvmpt2 6249 . . . . . . . 8 ((𝑥𝐴𝐵 ∈ ℝ) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
2119, 1, 20syl2anc 692 . . . . . . 7 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
2221breq1d 4628 . . . . . 6 ((𝜑𝑥𝐴) → (((𝑥𝐴𝐵)‘𝑥) ≤ 𝑚𝐵𝑚))
2322imbi2d 330 . . . . 5 ((𝜑𝑥𝐴) → ((𝑦𝑥 → ((𝑥𝐴𝐵)‘𝑥) ≤ 𝑚) ↔ (𝑦𝑥𝐵𝑚)))
2423ralbidva 2984 . . . 4 (𝜑 → (∀𝑥𝐴 (𝑦𝑥 → ((𝑥𝐴𝐵)‘𝑥) ≤ 𝑚) ↔ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚)))
2518, 24syl5bb 272 . . 3 (𝜑 → (∀𝑧𝐴 (𝑦𝑧 → ((𝑥𝐴𝐵)‘𝑧) ≤ 𝑚) ↔ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚)))
26252rexbidv 3055 . 2 (𝜑 → (∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → ((𝑥𝐴𝐵)‘𝑧) ≤ 𝑚) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚)))
276, 26bitrd 268 1 (𝜑 → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   = wceq 1480   ∈ wcel 1992  ∀wral 2912  ∃wrex 2913   ⊆ wss 3560   class class class wbr 4618   ↦ cmpt 4678  ⟶wf 5846  ‘cfv 5850  ℝcr 9880   ≤ cle 10020  ≤𝑂(1)clo1 14147 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-pre-lttri 9955  ax-pre-lttrn 9956 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-po 5000  df-so 5001  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-er 7688  df-pm 7806  df-en 7901  df-dom 7902  df-sdom 7903  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-ico 12120  df-lo1 14151 This theorem is referenced by:  ello1mpt2  14182  ello1d  14183  elo1mpt  14194  o1lo1  14197  lo1resb  14224  lo1add  14286  lo1mul  14287  lo1le  14311
 Copyright terms: Public domain W3C validator