Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elmpps Structured version   Visualization version   GIF version

Theorem elmpps 31178
Description: Definition of a provable pre-statement, essentially just a reorganization of the arguments of df-mcls . (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mppsval.p 𝑃 = (mPreSt‘𝑇)
mppsval.j 𝐽 = (mPPSt‘𝑇)
mppsval.c 𝐶 = (mCls‘𝑇)
Assertion
Ref Expression
elmpps (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝐽 ↔ (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐴 ∈ (𝐷𝐶𝐻)))

Proof of Theorem elmpps
Dummy variables 𝑎 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ot 4157 . . 3 𝐷, 𝐻, 𝐴⟩ = ⟨⟨𝐷, 𝐻⟩, 𝐴
2 mppsval.p . . . 4 𝑃 = (mPreSt‘𝑇)
3 mppsval.j . . . 4 𝐽 = (mPPSt‘𝑇)
4 mppsval.c . . . 4 𝐶 = (mCls‘𝑇)
52, 3, 4mppsval 31177 . . 3 𝐽 = {⟨⟨𝑑, ⟩, 𝑎⟩ ∣ (⟨𝑑, , 𝑎⟩ ∈ 𝑃𝑎 ∈ (𝑑𝐶))}
61, 5eleq12i 2691 . 2 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝐽 ↔ ⟨⟨𝐷, 𝐻⟩, 𝐴⟩ ∈ {⟨⟨𝑑, ⟩, 𝑎⟩ ∣ (⟨𝑑, , 𝑎⟩ ∈ 𝑃𝑎 ∈ (𝑑𝐶))})
7 oprabss 6699 . . . 4 {⟨⟨𝑑, ⟩, 𝑎⟩ ∣ (⟨𝑑, , 𝑎⟩ ∈ 𝑃𝑎 ∈ (𝑑𝐶))} ⊆ ((V × V) × V)
87sseli 3579 . . 3 (⟨⟨𝐷, 𝐻⟩, 𝐴⟩ ∈ {⟨⟨𝑑, ⟩, 𝑎⟩ ∣ (⟨𝑑, , 𝑎⟩ ∈ 𝑃𝑎 ∈ (𝑑𝐶))} → ⟨⟨𝐷, 𝐻⟩, 𝐴⟩ ∈ ((V × V) × V))
92mpstssv 31144 . . . . . 6 𝑃 ⊆ ((V × V) × V)
109sseli 3579 . . . . 5 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃 → ⟨𝐷, 𝐻, 𝐴⟩ ∈ ((V × V) × V))
111, 10syl5eqelr 2703 . . . 4 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃 → ⟨⟨𝐷, 𝐻⟩, 𝐴⟩ ∈ ((V × V) × V))
1211adantr 481 . . 3 ((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐴 ∈ (𝐷𝐶𝐻)) → ⟨⟨𝐷, 𝐻⟩, 𝐴⟩ ∈ ((V × V) × V))
13 opelxp 5106 . . . 4 (⟨⟨𝐷, 𝐻⟩, 𝐴⟩ ∈ ((V × V) × V) ↔ (⟨𝐷, 𝐻⟩ ∈ (V × V) ∧ 𝐴 ∈ V))
14 opelxp 5106 . . . . 5 (⟨𝐷, 𝐻⟩ ∈ (V × V) ↔ (𝐷 ∈ V ∧ 𝐻 ∈ V))
15 simp1 1059 . . . . . . . . . 10 ((𝑑 = 𝐷 = 𝐻𝑎 = 𝐴) → 𝑑 = 𝐷)
16 simp2 1060 . . . . . . . . . 10 ((𝑑 = 𝐷 = 𝐻𝑎 = 𝐴) → = 𝐻)
17 simp3 1061 . . . . . . . . . 10 ((𝑑 = 𝐷 = 𝐻𝑎 = 𝐴) → 𝑎 = 𝐴)
1815, 16, 17oteq123d 4385 . . . . . . . . 9 ((𝑑 = 𝐷 = 𝐻𝑎 = 𝐴) → ⟨𝑑, , 𝑎⟩ = ⟨𝐷, 𝐻, 𝐴⟩)
1918eleq1d 2683 . . . . . . . 8 ((𝑑 = 𝐷 = 𝐻𝑎 = 𝐴) → (⟨𝑑, , 𝑎⟩ ∈ 𝑃 ↔ ⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃))
2015, 16oveq12d 6622 . . . . . . . . 9 ((𝑑 = 𝐷 = 𝐻𝑎 = 𝐴) → (𝑑𝐶) = (𝐷𝐶𝐻))
2117, 20eleq12d 2692 . . . . . . . 8 ((𝑑 = 𝐷 = 𝐻𝑎 = 𝐴) → (𝑎 ∈ (𝑑𝐶) ↔ 𝐴 ∈ (𝐷𝐶𝐻)))
2219, 21anbi12d 746 . . . . . . 7 ((𝑑 = 𝐷 = 𝐻𝑎 = 𝐴) → ((⟨𝑑, , 𝑎⟩ ∈ 𝑃𝑎 ∈ (𝑑𝐶)) ↔ (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐴 ∈ (𝐷𝐶𝐻))))
2322eloprabga 6700 . . . . . 6 ((𝐷 ∈ V ∧ 𝐻 ∈ V ∧ 𝐴 ∈ V) → (⟨⟨𝐷, 𝐻⟩, 𝐴⟩ ∈ {⟨⟨𝑑, ⟩, 𝑎⟩ ∣ (⟨𝑑, , 𝑎⟩ ∈ 𝑃𝑎 ∈ (𝑑𝐶))} ↔ (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐴 ∈ (𝐷𝐶𝐻))))
24233expa 1262 . . . . 5 (((𝐷 ∈ V ∧ 𝐻 ∈ V) ∧ 𝐴 ∈ V) → (⟨⟨𝐷, 𝐻⟩, 𝐴⟩ ∈ {⟨⟨𝑑, ⟩, 𝑎⟩ ∣ (⟨𝑑, , 𝑎⟩ ∈ 𝑃𝑎 ∈ (𝑑𝐶))} ↔ (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐴 ∈ (𝐷𝐶𝐻))))
2514, 24sylanb 489 . . . 4 ((⟨𝐷, 𝐻⟩ ∈ (V × V) ∧ 𝐴 ∈ V) → (⟨⟨𝐷, 𝐻⟩, 𝐴⟩ ∈ {⟨⟨𝑑, ⟩, 𝑎⟩ ∣ (⟨𝑑, , 𝑎⟩ ∈ 𝑃𝑎 ∈ (𝑑𝐶))} ↔ (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐴 ∈ (𝐷𝐶𝐻))))
2613, 25sylbi 207 . . 3 (⟨⟨𝐷, 𝐻⟩, 𝐴⟩ ∈ ((V × V) × V) → (⟨⟨𝐷, 𝐻⟩, 𝐴⟩ ∈ {⟨⟨𝑑, ⟩, 𝑎⟩ ∣ (⟨𝑑, , 𝑎⟩ ∈ 𝑃𝑎 ∈ (𝑑𝐶))} ↔ (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐴 ∈ (𝐷𝐶𝐻))))
278, 12, 26pm5.21nii 368 . 2 (⟨⟨𝐷, 𝐻⟩, 𝐴⟩ ∈ {⟨⟨𝑑, ⟩, 𝑎⟩ ∣ (⟨𝑑, , 𝑎⟩ ∈ 𝑃𝑎 ∈ (𝑑𝐶))} ↔ (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐴 ∈ (𝐷𝐶𝐻)))
286, 27bitri 264 1 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝐽 ↔ (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐴 ∈ (𝐷𝐶𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  Vcvv 3186  cop 4154  cotp 4156   × cxp 5072  cfv 5847  (class class class)co 6604  {coprab 6605  mPreStcmpst 31078  mClscmcls 31082  mPPStcmpps 31083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-ot 4157  df-uni 4403  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-iota 5810  df-fun 5849  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpst 31098  df-mpps 31103
This theorem is referenced by:  mthmpps  31187  mclspps  31189
  Copyright terms: Public domain W3C validator