![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elmthm | Structured version Visualization version GIF version |
Description: A theorem is a pre-statement, whose reduct is also the reduct of a provable pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mthmval.r | ⊢ 𝑅 = (mStRed‘𝑇) |
mthmval.j | ⊢ 𝐽 = (mPPSt‘𝑇) |
mthmval.u | ⊢ 𝑈 = (mThm‘𝑇) |
Ref | Expression |
---|---|
elmthm | ⊢ (𝑋 ∈ 𝑈 ↔ ∃𝑥 ∈ 𝐽 (𝑅‘𝑥) = (𝑅‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mthmval.r | . . . 4 ⊢ 𝑅 = (mStRed‘𝑇) | |
2 | mthmval.j | . . . 4 ⊢ 𝐽 = (mPPSt‘𝑇) | |
3 | mthmval.u | . . . 4 ⊢ 𝑈 = (mThm‘𝑇) | |
4 | 1, 2, 3 | mthmval 31598 | . . 3 ⊢ 𝑈 = (◡𝑅 “ (𝑅 “ 𝐽)) |
5 | 4 | eleq2i 2722 | . 2 ⊢ (𝑋 ∈ 𝑈 ↔ 𝑋 ∈ (◡𝑅 “ (𝑅 “ 𝐽))) |
6 | eqid 2651 | . . . . 5 ⊢ (mPreSt‘𝑇) = (mPreSt‘𝑇) | |
7 | 6, 1 | msrf 31565 | . . . 4 ⊢ 𝑅:(mPreSt‘𝑇)⟶(mPreSt‘𝑇) |
8 | ffn 6083 | . . . 4 ⊢ (𝑅:(mPreSt‘𝑇)⟶(mPreSt‘𝑇) → 𝑅 Fn (mPreSt‘𝑇)) | |
9 | 7, 8 | ax-mp 5 | . . 3 ⊢ 𝑅 Fn (mPreSt‘𝑇) |
10 | elpreima 6377 | . . 3 ⊢ (𝑅 Fn (mPreSt‘𝑇) → (𝑋 ∈ (◡𝑅 “ (𝑅 “ 𝐽)) ↔ (𝑋 ∈ (mPreSt‘𝑇) ∧ (𝑅‘𝑋) ∈ (𝑅 “ 𝐽)))) | |
11 | 9, 10 | ax-mp 5 | . 2 ⊢ (𝑋 ∈ (◡𝑅 “ (𝑅 “ 𝐽)) ↔ (𝑋 ∈ (mPreSt‘𝑇) ∧ (𝑅‘𝑋) ∈ (𝑅 “ 𝐽))) |
12 | 6, 2 | mppspst 31597 | . . . . 5 ⊢ 𝐽 ⊆ (mPreSt‘𝑇) |
13 | fvelimab 6292 | . . . . 5 ⊢ ((𝑅 Fn (mPreSt‘𝑇) ∧ 𝐽 ⊆ (mPreSt‘𝑇)) → ((𝑅‘𝑋) ∈ (𝑅 “ 𝐽) ↔ ∃𝑥 ∈ 𝐽 (𝑅‘𝑥) = (𝑅‘𝑋))) | |
14 | 9, 12, 13 | mp2an 708 | . . . 4 ⊢ ((𝑅‘𝑋) ∈ (𝑅 “ 𝐽) ↔ ∃𝑥 ∈ 𝐽 (𝑅‘𝑥) = (𝑅‘𝑋)) |
15 | 14 | anbi2i 730 | . . 3 ⊢ ((𝑋 ∈ (mPreSt‘𝑇) ∧ (𝑅‘𝑋) ∈ (𝑅 “ 𝐽)) ↔ (𝑋 ∈ (mPreSt‘𝑇) ∧ ∃𝑥 ∈ 𝐽 (𝑅‘𝑥) = (𝑅‘𝑋))) |
16 | 12 | sseli 3632 | . . . . . 6 ⊢ (𝑥 ∈ 𝐽 → 𝑥 ∈ (mPreSt‘𝑇)) |
17 | 6, 1 | msrrcl 31566 | . . . . . 6 ⊢ ((𝑅‘𝑥) = (𝑅‘𝑋) → (𝑥 ∈ (mPreSt‘𝑇) ↔ 𝑋 ∈ (mPreSt‘𝑇))) |
18 | 16, 17 | syl5ibcom 235 | . . . . 5 ⊢ (𝑥 ∈ 𝐽 → ((𝑅‘𝑥) = (𝑅‘𝑋) → 𝑋 ∈ (mPreSt‘𝑇))) |
19 | 18 | rexlimiv 3056 | . . . 4 ⊢ (∃𝑥 ∈ 𝐽 (𝑅‘𝑥) = (𝑅‘𝑋) → 𝑋 ∈ (mPreSt‘𝑇)) |
20 | 19 | pm4.71ri 666 | . . 3 ⊢ (∃𝑥 ∈ 𝐽 (𝑅‘𝑥) = (𝑅‘𝑋) ↔ (𝑋 ∈ (mPreSt‘𝑇) ∧ ∃𝑥 ∈ 𝐽 (𝑅‘𝑥) = (𝑅‘𝑋))) |
21 | 15, 20 | bitr4i 267 | . 2 ⊢ ((𝑋 ∈ (mPreSt‘𝑇) ∧ (𝑅‘𝑋) ∈ (𝑅 “ 𝐽)) ↔ ∃𝑥 ∈ 𝐽 (𝑅‘𝑥) = (𝑅‘𝑋)) |
22 | 5, 11, 21 | 3bitri 286 | 1 ⊢ (𝑋 ∈ 𝑈 ↔ ∃𝑥 ∈ 𝐽 (𝑅‘𝑥) = (𝑅‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∃wrex 2942 ⊆ wss 3607 ◡ccnv 5142 “ cima 5146 Fn wfn 5921 ⟶wf 5922 ‘cfv 5926 mPreStcmpst 31496 mStRedcmsr 31497 mPPStcmpps 31501 mThmcmthm 31502 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-fal 1529 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-ot 4219 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-ov 6693 df-oprab 6694 df-1st 7210 df-2nd 7211 df-mpst 31516 df-msr 31517 df-mpps 31521 df-mthm 31522 |
This theorem is referenced by: mthmi 31600 mthmpps 31605 |
Copyright terms: Public domain | W3C validator |