MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elnnne0 Structured version   Visualization version   GIF version

Theorem elnnne0 11156
Description: The positive integer property expressed in terms of difference from zero. (Contributed by Stefan O'Rear, 12-Sep-2015.)
Assertion
Ref Expression
elnnne0 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0𝑁 ≠ 0))

Proof of Theorem elnnne0
StepHypRef Expression
1 dfn2 11155 . . 3 ℕ = (ℕ0 ∖ {0})
21eleq2i 2680 . 2 (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℕ0 ∖ {0}))
3 eldifsn 4260 . 2 (𝑁 ∈ (ℕ0 ∖ {0}) ↔ (𝑁 ∈ ℕ0𝑁 ≠ 0))
42, 3bitri 263 1 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0𝑁 ≠ 0))
Colors of variables: wff setvar class
Syntax hints:  wb 195  wa 383  wcel 1977  wne 2780  cdif 3537  {csn 4125  0cc0 9793  cn 10870  0cn0 11142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4704  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-resscn 9850  ax-1cn 9851  ax-icn 9852  ax-addcl 9853  ax-addrcl 9854  ax-mulcl 9855  ax-mulrcl 9856  ax-mulcom 9857  ax-addass 9858  ax-mulass 9859  ax-distr 9860  ax-i2m1 9861  ax-1ne0 9862  ax-1rid 9863  ax-rnegex 9864  ax-rrecex 9865  ax-cnre 9866  ax-pre-lttri 9867  ax-pre-lttrn 9868  ax-pre-ltadd 9869  ax-pre-mulgt0 9870
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4368  df-iun 4452  df-br 4579  df-opab 4639  df-mpt 4640  df-tr 4676  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6936  df-wrecs 7272  df-recs 7333  df-rdg 7371  df-er 7607  df-en 7820  df-dom 7821  df-sdom 7822  df-pnf 9933  df-mnf 9934  df-xr 9935  df-ltxr 9936  df-le 9937  df-sub 10120  df-neg 10121  df-nn 10871  df-n0 11143
This theorem is referenced by:  nn0n0n1ge2  11208  nn0nndivcl  11212  fzo1fzo0n0  12344  elfznelfzo  12397  hashnn0n0nn  12996  swrdccatin1  13283  cshwsublen  13342  cshwidxmod  13349  cshwidx0  13352  repswcshw  13358  cshw1  13368  odhash3  17763  0ringnnzr  19039  cply1mul  19434  fvmptnn04if  20421  chfacfisf  20426  chfacfisfcpmat  20427  tayl0  23865  dvtaylp  23873  nvnencycllem  25965  hashecclwwlkn1  26155  usghashecclwwlk  26156  frgrareg  26438  frgraregord013  26439  2sqmod  28773  plymulx0  29744  plymulx  29745  signstfvn  29766  signstfveq0a  29773  poimirlem13  32386  poimirlem20  32393  dvnmul  38627  dvnprodlem3  38632  wallispilem3  38754  fourierdlem103  38896  fourierdlem104  38897  etransclem28  38949  etransclem35  38956  etransclem38  38959  etransclem44  38965  lswn0  40037  2ffzoeq  40178  wlkOnl1iedg  40865  pthdlem2  40966  crctcsh  41019  isclwwlksnx  41189  hashecclwwlksn1  41253  umgrhashecclwwlk  41254  av-frgrareg  41540  av-frgraregord013  41541  ztprmneprm  41910
  Copyright terms: Public domain W3C validator