![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elnnz | Structured version Visualization version GIF version |
Description: Positive integer property expressed in terms of integers. (Contributed by NM, 8-Jan-2002.) |
Ref | Expression |
---|---|
elnnz | ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnre 11065 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
2 | orc 399 | . . . 4 ⊢ (𝑁 ∈ ℕ → (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))) | |
3 | nngt0 11087 | . . . 4 ⊢ (𝑁 ∈ ℕ → 0 < 𝑁) | |
4 | 1, 2, 3 | jca31 556 | . . 3 ⊢ (𝑁 ∈ ℕ → ((𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))) ∧ 0 < 𝑁)) |
5 | idd 24 | . . . . . . 7 ⊢ ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → (𝑁 ∈ ℕ → 𝑁 ∈ ℕ)) | |
6 | lt0neg2 10573 | . . . . . . . . . . . 12 ⊢ (𝑁 ∈ ℝ → (0 < 𝑁 ↔ -𝑁 < 0)) | |
7 | renegcl 10382 | . . . . . . . . . . . . 13 ⊢ (𝑁 ∈ ℝ → -𝑁 ∈ ℝ) | |
8 | 0re 10078 | . . . . . . . . . . . . 13 ⊢ 0 ∈ ℝ | |
9 | ltnsym 10173 | . . . . . . . . . . . . 13 ⊢ ((-𝑁 ∈ ℝ ∧ 0 ∈ ℝ) → (-𝑁 < 0 → ¬ 0 < -𝑁)) | |
10 | 7, 8, 9 | sylancl 695 | . . . . . . . . . . . 12 ⊢ (𝑁 ∈ ℝ → (-𝑁 < 0 → ¬ 0 < -𝑁)) |
11 | 6, 10 | sylbid 230 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℝ → (0 < 𝑁 → ¬ 0 < -𝑁)) |
12 | 11 | imp 444 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → ¬ 0 < -𝑁) |
13 | nngt0 11087 | . . . . . . . . . 10 ⊢ (-𝑁 ∈ ℕ → 0 < -𝑁) | |
14 | 12, 13 | nsyl 135 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → ¬ -𝑁 ∈ ℕ) |
15 | gt0ne0 10531 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → 𝑁 ≠ 0) | |
16 | 15 | neneqd 2828 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → ¬ 𝑁 = 0) |
17 | ioran 510 | . . . . . . . . 9 ⊢ (¬ (-𝑁 ∈ ℕ ∨ 𝑁 = 0) ↔ (¬ -𝑁 ∈ ℕ ∧ ¬ 𝑁 = 0)) | |
18 | 14, 16, 17 | sylanbrc 699 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → ¬ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)) |
19 | 18 | pm2.21d 118 | . . . . . . 7 ⊢ ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → ((-𝑁 ∈ ℕ ∨ 𝑁 = 0) → 𝑁 ∈ ℕ)) |
20 | 5, 19 | jaod 394 | . . . . . 6 ⊢ ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → ((𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)) → 𝑁 ∈ ℕ)) |
21 | 20 | ex 449 | . . . . 5 ⊢ (𝑁 ∈ ℝ → (0 < 𝑁 → ((𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)) → 𝑁 ∈ ℕ))) |
22 | 21 | com23 86 | . . . 4 ⊢ (𝑁 ∈ ℝ → ((𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)) → (0 < 𝑁 → 𝑁 ∈ ℕ))) |
23 | 22 | imp31 447 | . . 3 ⊢ (((𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))) ∧ 0 < 𝑁) → 𝑁 ∈ ℕ) |
24 | 4, 23 | impbii 199 | . 2 ⊢ (𝑁 ∈ ℕ ↔ ((𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))) ∧ 0 < 𝑁)) |
25 | elz 11417 | . . . 4 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) | |
26 | 3orrot 1061 | . . . . . 6 ⊢ ((𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) ↔ (𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
27 | 3orass 1057 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ ∨ 𝑁 = 0) ↔ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))) | |
28 | 26, 27 | bitri 264 | . . . . 5 ⊢ ((𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) ↔ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))) |
29 | 28 | anbi2i 730 | . . . 4 ⊢ ((𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)))) |
30 | 25, 29 | bitri 264 | . . 3 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)))) |
31 | 30 | anbi1i 731 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 0 < 𝑁) ↔ ((𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))) ∧ 0 < 𝑁)) |
32 | 24, 31 | bitr4i 267 | 1 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∨ wo 382 ∧ wa 383 ∨ w3o 1053 = wceq 1523 ∈ wcel 2030 class class class wbr 4685 ℝcr 9973 0cc0 9974 < clt 10112 -cneg 10305 ℕcn 11058 ℤcz 11415 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-z 11416 |
This theorem is referenced by: elnn0z 11428 nnssz 11435 elnnz1 11441 znnsub 11461 nn0ge0div 11484 msqznn 11497 lbfzo0 12547 elfzo0z 12549 fzofzim 12554 fzo1fzo0n0 12558 elfzodifsumelfzo 12573 elfznelfzo 12613 nnesq 13028 swrdlsw 13498 2swrd1eqwrdeq 13500 swrdccatin12lem3 13536 repswswrd 13577 cshwcsh2id 13620 swrd2lsw 13741 2swrd2eqwrdeq 13742 nnabscl 14109 iseralt 14459 sqrt2irrlem 15021 sqrt2irrlemOLD 15022 p1modz1 15034 nndivdvds 15036 oddge22np1 15120 evennn2n 15122 nno 15145 nnoddm1d2 15149 ndvdsadd 15181 bitsfzolem 15203 sqgcd 15325 qredeu 15419 prmind2 15445 qgt0numnn 15506 oddprm 15562 pythagtriplem6 15573 pythagtriplem11 15577 pythagtriplem13 15579 pythagtriplem19 15585 pc2dvds 15630 pcadd 15640 prmreclem3 15669 4sqlem11 15706 4sqlem12 15707 prmgaplem7 15808 cshwshashlem2 15850 subgmulg 17655 znidomb 19958 sgmnncl 24918 muinv 24964 mersenne 24997 bposlem6 25059 gausslemma2dlem1a 25135 lgseisenlem1 25145 lgsquadlem1 25150 lgsquadlem2 25151 2sqlem8 25196 dchrisum0flblem2 25243 clwlkclwwlklem2a2 26959 clwlkclwwlklem2a4 26963 clwlkclwwlklem2a 26964 eucrct2eupth1 27222 nn0prpwlem 32442 poimirlem7 33546 poimirlem29 33568 mblfinlem2 33577 irrapxlem4 37706 rmspecnonsq 37789 rmynn 37840 jm2.24 37847 jm2.23 37880 jm2.20nn 37881 jm2.27a 37889 jm2.27c 37891 rmydioph 37898 jm3.1lem3 37903 sumnnodd 40180 dvnxpaek 40475 dirkertrigeqlem3 40635 fourierdlem47 40688 fouriersw 40766 etransclem15 40784 etransclem24 40793 etransclem25 40794 etransclem35 40804 etransclem48 40817 zm1nn 41641 iccpartigtl 41684 nnoALTV 41931 ztprmneprm 42450 blennngt2o2 42711 |
Copyright terms: Public domain | W3C validator |