Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elno2 Structured version   Visualization version   GIF version

Theorem elno2 31543
 Description: An alternative condition for membership in No . (Contributed by Scott Fenton, 21-Mar-2012.)
Assertion
Ref Expression
elno2 (𝐴 No ↔ (Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ {1𝑜, 2𝑜}))

Proof of Theorem elno2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nofun 31538 . . 3 (𝐴 No → Fun 𝐴)
2 nodmon 31539 . . 3 (𝐴 No → dom 𝐴 ∈ On)
3 norn 31540 . . 3 (𝐴 No → ran 𝐴 ⊆ {1𝑜, 2𝑜})
41, 2, 33jca 1240 . 2 (𝐴 No → (Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ {1𝑜, 2𝑜}))
5 simp2 1060 . . . 4 ((Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ {1𝑜, 2𝑜}) → dom 𝐴 ∈ On)
6 simpl 473 . . . . . . . 8 ((Fun 𝐴 ∧ dom 𝐴 ∈ On) → Fun 𝐴)
7 eqidd 2622 . . . . . . . 8 ((Fun 𝐴 ∧ dom 𝐴 ∈ On) → dom 𝐴 = dom 𝐴)
8 df-fn 5855 . . . . . . . 8 (𝐴 Fn dom 𝐴 ↔ (Fun 𝐴 ∧ dom 𝐴 = dom 𝐴))
96, 7, 8sylanbrc 697 . . . . . . 7 ((Fun 𝐴 ∧ dom 𝐴 ∈ On) → 𝐴 Fn dom 𝐴)
109anim1i 591 . . . . . 6 (((Fun 𝐴 ∧ dom 𝐴 ∈ On) ∧ ran 𝐴 ⊆ {1𝑜, 2𝑜}) → (𝐴 Fn dom 𝐴 ∧ ran 𝐴 ⊆ {1𝑜, 2𝑜}))
11103impa 1256 . . . . 5 ((Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ {1𝑜, 2𝑜}) → (𝐴 Fn dom 𝐴 ∧ ran 𝐴 ⊆ {1𝑜, 2𝑜}))
12 df-f 5856 . . . . 5 (𝐴:dom 𝐴⟶{1𝑜, 2𝑜} ↔ (𝐴 Fn dom 𝐴 ∧ ran 𝐴 ⊆ {1𝑜, 2𝑜}))
1311, 12sylibr 224 . . . 4 ((Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ {1𝑜, 2𝑜}) → 𝐴:dom 𝐴⟶{1𝑜, 2𝑜})
14 feq2 5989 . . . . 5 (𝑥 = dom 𝐴 → (𝐴:𝑥⟶{1𝑜, 2𝑜} ↔ 𝐴:dom 𝐴⟶{1𝑜, 2𝑜}))
1514rspcev 3298 . . . 4 ((dom 𝐴 ∈ On ∧ 𝐴:dom 𝐴⟶{1𝑜, 2𝑜}) → ∃𝑥 ∈ On 𝐴:𝑥⟶{1𝑜, 2𝑜})
165, 13, 15syl2anc 692 . . 3 ((Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ {1𝑜, 2𝑜}) → ∃𝑥 ∈ On 𝐴:𝑥⟶{1𝑜, 2𝑜})
17 elno 31535 . . 3 (𝐴 No ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1𝑜, 2𝑜})
1816, 17sylibr 224 . 2 ((Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ {1𝑜, 2𝑜}) → 𝐴 No )
194, 18impbii 199 1 (𝐴 No ↔ (Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ {1𝑜, 2𝑜}))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 196   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987  ∃wrex 2908   ⊆ wss 3559  {cpr 4155  dom cdm 5079  ran crn 5080  Oncon0 5687  Fun wfun 5846   Fn wfn 5847  ⟶wf 5848  1𝑜c1o 7505  2𝑜c2o 7506   No csur 31529 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pr 4872 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-no 31532 This theorem is referenced by:  elno3  31544  noextend  31559  nosino  31610
 Copyright terms: Public domain W3C validator