![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elnp | Structured version Visualization version GIF version |
Description: Membership in positive reals. (Contributed by NM, 16-Feb-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
elnp | ⊢ (𝐴 ∈ P ↔ ((∅ ⊊ 𝐴 ∧ 𝐴 ⊊ Q) ∧ ∀𝑥 ∈ 𝐴 (∀𝑦(𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴) ∧ ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3352 | . 2 ⊢ (𝐴 ∈ P → 𝐴 ∈ V) | |
2 | pssss 3844 | . . . 4 ⊢ (𝐴 ⊊ Q → 𝐴 ⊆ Q) | |
3 | nqex 9937 | . . . . 5 ⊢ Q ∈ V | |
4 | 3 | ssex 4954 | . . . 4 ⊢ (𝐴 ⊆ Q → 𝐴 ∈ V) |
5 | 2, 4 | syl 17 | . . 3 ⊢ (𝐴 ⊊ Q → 𝐴 ∈ V) |
6 | 5 | ad2antlr 765 | . 2 ⊢ (((∅ ⊊ 𝐴 ∧ 𝐴 ⊊ Q) ∧ ∀𝑥 ∈ 𝐴 (∀𝑦(𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴) ∧ ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦)) → 𝐴 ∈ V) |
7 | psseq2 3837 | . . . . 5 ⊢ (𝑧 = 𝐴 → (∅ ⊊ 𝑧 ↔ ∅ ⊊ 𝐴)) | |
8 | psseq1 3836 | . . . . 5 ⊢ (𝑧 = 𝐴 → (𝑧 ⊊ Q ↔ 𝐴 ⊊ Q)) | |
9 | 7, 8 | anbi12d 749 | . . . 4 ⊢ (𝑧 = 𝐴 → ((∅ ⊊ 𝑧 ∧ 𝑧 ⊊ Q) ↔ (∅ ⊊ 𝐴 ∧ 𝐴 ⊊ Q))) |
10 | eleq2 2828 | . . . . . . . 8 ⊢ (𝑧 = 𝐴 → (𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝐴)) | |
11 | 10 | imbi2d 329 | . . . . . . 7 ⊢ (𝑧 = 𝐴 → ((𝑦 <Q 𝑥 → 𝑦 ∈ 𝑧) ↔ (𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴))) |
12 | 11 | albidv 1998 | . . . . . 6 ⊢ (𝑧 = 𝐴 → (∀𝑦(𝑦 <Q 𝑥 → 𝑦 ∈ 𝑧) ↔ ∀𝑦(𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴))) |
13 | rexeq 3278 | . . . . . 6 ⊢ (𝑧 = 𝐴 → (∃𝑦 ∈ 𝑧 𝑥 <Q 𝑦 ↔ ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦)) | |
14 | 12, 13 | anbi12d 749 | . . . . 5 ⊢ (𝑧 = 𝐴 → ((∀𝑦(𝑦 <Q 𝑥 → 𝑦 ∈ 𝑧) ∧ ∃𝑦 ∈ 𝑧 𝑥 <Q 𝑦) ↔ (∀𝑦(𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴) ∧ ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦))) |
15 | 14 | raleqbi1dv 3285 | . . . 4 ⊢ (𝑧 = 𝐴 → (∀𝑥 ∈ 𝑧 (∀𝑦(𝑦 <Q 𝑥 → 𝑦 ∈ 𝑧) ∧ ∃𝑦 ∈ 𝑧 𝑥 <Q 𝑦) ↔ ∀𝑥 ∈ 𝐴 (∀𝑦(𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴) ∧ ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦))) |
16 | 9, 15 | anbi12d 749 | . . 3 ⊢ (𝑧 = 𝐴 → (((∅ ⊊ 𝑧 ∧ 𝑧 ⊊ Q) ∧ ∀𝑥 ∈ 𝑧 (∀𝑦(𝑦 <Q 𝑥 → 𝑦 ∈ 𝑧) ∧ ∃𝑦 ∈ 𝑧 𝑥 <Q 𝑦)) ↔ ((∅ ⊊ 𝐴 ∧ 𝐴 ⊊ Q) ∧ ∀𝑥 ∈ 𝐴 (∀𝑦(𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴) ∧ ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦)))) |
17 | df-np 9995 | . . 3 ⊢ P = {𝑧 ∣ ((∅ ⊊ 𝑧 ∧ 𝑧 ⊊ Q) ∧ ∀𝑥 ∈ 𝑧 (∀𝑦(𝑦 <Q 𝑥 → 𝑦 ∈ 𝑧) ∧ ∃𝑦 ∈ 𝑧 𝑥 <Q 𝑦))} | |
18 | 16, 17 | elab2g 3493 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ P ↔ ((∅ ⊊ 𝐴 ∧ 𝐴 ⊊ Q) ∧ ∀𝑥 ∈ 𝐴 (∀𝑦(𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴) ∧ ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦)))) |
19 | 1, 6, 18 | pm5.21nii 367 | 1 ⊢ (𝐴 ∈ P ↔ ((∅ ⊊ 𝐴 ∧ 𝐴 ⊊ Q) ∧ ∀𝑥 ∈ 𝐴 (∀𝑦(𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴) ∧ ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∀wal 1630 = wceq 1632 ∈ wcel 2139 ∀wral 3050 ∃wrex 3051 Vcvv 3340 ⊆ wss 3715 ⊊ wpss 3716 ∅c0 4058 class class class wbr 4804 Qcnq 9866 <Q cltq 9872 Pcnp 9873 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-inf2 8711 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-tr 4905 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-om 7231 df-ni 9886 df-nq 9926 df-np 9995 |
This theorem is referenced by: genpcl 10022 nqpr 10028 ltexprlem5 10054 reclem2pr 10062 suplem1pr 10066 |
Copyright terms: Public domain | W3C validator |