MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elnpi Structured version   Visualization version   GIF version

Theorem elnpi 10002
Description: Membership in positive reals. (Contributed by Mario Carneiro, 11-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
elnpi (𝐴P ↔ ((𝐴 ∈ V ∧ ∅ ⊊ 𝐴𝐴Q) ∧ ∀𝑥𝐴 (∀𝑦(𝑦 <Q 𝑥𝑦𝐴) ∧ ∃𝑦𝐴 𝑥 <Q 𝑦)))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem elnpi
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elex 3352 . 2 (𝐴P𝐴 ∈ V)
2 simpl1 1228 . 2 (((𝐴 ∈ V ∧ ∅ ⊊ 𝐴𝐴Q) ∧ ∀𝑥𝐴 (∀𝑦(𝑦 <Q 𝑥𝑦𝐴) ∧ ∃𝑦𝐴 𝑥 <Q 𝑦)) → 𝐴 ∈ V)
3 psseq2 3837 . . . . . 6 (𝑧 = 𝐴 → (∅ ⊊ 𝑧 ↔ ∅ ⊊ 𝐴))
4 psseq1 3836 . . . . . 6 (𝑧 = 𝐴 → (𝑧Q𝐴Q))
53, 4anbi12d 749 . . . . 5 (𝑧 = 𝐴 → ((∅ ⊊ 𝑧𝑧Q) ↔ (∅ ⊊ 𝐴𝐴Q)))
6 eleq2 2828 . . . . . . . . 9 (𝑧 = 𝐴 → (𝑦𝑧𝑦𝐴))
76imbi2d 329 . . . . . . . 8 (𝑧 = 𝐴 → ((𝑦 <Q 𝑥𝑦𝑧) ↔ (𝑦 <Q 𝑥𝑦𝐴)))
87albidv 1998 . . . . . . 7 (𝑧 = 𝐴 → (∀𝑦(𝑦 <Q 𝑥𝑦𝑧) ↔ ∀𝑦(𝑦 <Q 𝑥𝑦𝐴)))
9 rexeq 3278 . . . . . . 7 (𝑧 = 𝐴 → (∃𝑦𝑧 𝑥 <Q 𝑦 ↔ ∃𝑦𝐴 𝑥 <Q 𝑦))
108, 9anbi12d 749 . . . . . 6 (𝑧 = 𝐴 → ((∀𝑦(𝑦 <Q 𝑥𝑦𝑧) ∧ ∃𝑦𝑧 𝑥 <Q 𝑦) ↔ (∀𝑦(𝑦 <Q 𝑥𝑦𝐴) ∧ ∃𝑦𝐴 𝑥 <Q 𝑦)))
1110raleqbi1dv 3285 . . . . 5 (𝑧 = 𝐴 → (∀𝑥𝑧 (∀𝑦(𝑦 <Q 𝑥𝑦𝑧) ∧ ∃𝑦𝑧 𝑥 <Q 𝑦) ↔ ∀𝑥𝐴 (∀𝑦(𝑦 <Q 𝑥𝑦𝐴) ∧ ∃𝑦𝐴 𝑥 <Q 𝑦)))
125, 11anbi12d 749 . . . 4 (𝑧 = 𝐴 → (((∅ ⊊ 𝑧𝑧Q) ∧ ∀𝑥𝑧 (∀𝑦(𝑦 <Q 𝑥𝑦𝑧) ∧ ∃𝑦𝑧 𝑥 <Q 𝑦)) ↔ ((∅ ⊊ 𝐴𝐴Q) ∧ ∀𝑥𝐴 (∀𝑦(𝑦 <Q 𝑥𝑦𝐴) ∧ ∃𝑦𝐴 𝑥 <Q 𝑦))))
13 df-np 9995 . . . 4 P = {𝑧 ∣ ((∅ ⊊ 𝑧𝑧Q) ∧ ∀𝑥𝑧 (∀𝑦(𝑦 <Q 𝑥𝑦𝑧) ∧ ∃𝑦𝑧 𝑥 <Q 𝑦))}
1412, 13elab2g 3493 . . 3 (𝐴 ∈ V → (𝐴P ↔ ((∅ ⊊ 𝐴𝐴Q) ∧ ∀𝑥𝐴 (∀𝑦(𝑦 <Q 𝑥𝑦𝐴) ∧ ∃𝑦𝐴 𝑥 <Q 𝑦))))
15 id 22 . . . . . 6 ((𝐴 ∈ V ∧ ∅ ⊊ 𝐴𝐴Q) → (𝐴 ∈ V ∧ ∅ ⊊ 𝐴𝐴Q))
16153expib 1117 . . . . 5 (𝐴 ∈ V → ((∅ ⊊ 𝐴𝐴Q) → (𝐴 ∈ V ∧ ∅ ⊊ 𝐴𝐴Q)))
17 3simpc 1147 . . . . 5 ((𝐴 ∈ V ∧ ∅ ⊊ 𝐴𝐴Q) → (∅ ⊊ 𝐴𝐴Q))
1816, 17impbid1 215 . . . 4 (𝐴 ∈ V → ((∅ ⊊ 𝐴𝐴Q) ↔ (𝐴 ∈ V ∧ ∅ ⊊ 𝐴𝐴Q)))
1918anbi1d 743 . . 3 (𝐴 ∈ V → (((∅ ⊊ 𝐴𝐴Q) ∧ ∀𝑥𝐴 (∀𝑦(𝑦 <Q 𝑥𝑦𝐴) ∧ ∃𝑦𝐴 𝑥 <Q 𝑦)) ↔ ((𝐴 ∈ V ∧ ∅ ⊊ 𝐴𝐴Q) ∧ ∀𝑥𝐴 (∀𝑦(𝑦 <Q 𝑥𝑦𝐴) ∧ ∃𝑦𝐴 𝑥 <Q 𝑦))))
2014, 19bitrd 268 . 2 (𝐴 ∈ V → (𝐴P ↔ ((𝐴 ∈ V ∧ ∅ ⊊ 𝐴𝐴Q) ∧ ∀𝑥𝐴 (∀𝑦(𝑦 <Q 𝑥𝑦𝐴) ∧ ∃𝑦𝐴 𝑥 <Q 𝑦))))
211, 2, 20pm5.21nii 367 1 (𝐴P ↔ ((𝐴 ∈ V ∧ ∅ ⊊ 𝐴𝐴Q) ∧ ∀𝑥𝐴 (∀𝑦(𝑦 <Q 𝑥𝑦𝐴) ∧ ∃𝑦𝐴 𝑥 <Q 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072  wal 1630   = wceq 1632  wcel 2139  wral 3050  wrex 3051  Vcvv 3340  wpss 3716  c0 4058   class class class wbr 4804  Qcnq 9866   <Q cltq 9872  Pcnp 9873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-v 3342  df-in 3722  df-ss 3729  df-pss 3731  df-np 9995
This theorem is referenced by:  prn0  10003  prpssnq  10004  prcdnq  10007  prnmax  10009
  Copyright terms: Public domain W3C validator