MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elntg Structured version   Visualization version   GIF version

Theorem elntg 25858
Description: The line definition in the Tarski structure for the Euclidean geometry. (Contributed by Thierry Arnoux, 7-Apr-2019.)
Hypotheses
Ref Expression
elntg.1 𝑃 = (Base‘(EEG‘𝑁))
elntg.2 𝐼 = (Itv‘(EEG‘𝑁))
Assertion
Ref Expression
elntg (𝑁 ∈ ℕ → (LineG‘(EEG‘𝑁)) = (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑁   𝑧,𝑃
Allowed substitution hints:   𝑃(𝑥,𝑦)   𝐼(𝑥,𝑦,𝑧)

Proof of Theorem elntg
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 lngid 25336 . . 3 LineG = Slot (LineG‘ndx)
2 fvex 6199 . . . 4 (EEG‘𝑁) ∈ V
32a1i 11 . . 3 (𝑁 ∈ ℕ → (EEG‘𝑁) ∈ V)
4 eengstr 25854 . . . . 5 (𝑁 ∈ ℕ → (EEG‘𝑁) Struct ⟨1, 17⟩)
5 isstruct 15864 . . . . . 6 ((EEG‘𝑁) Struct ⟨1, 17⟩ ↔ ((1 ∈ ℕ ∧ 17 ∈ ℕ ∧ 1 ≤ 17) ∧ Fun ((EEG‘𝑁) ∖ {∅}) ∧ dom (EEG‘𝑁) ⊆ (1...17)))
65simp2bi 1076 . . . . 5 ((EEG‘𝑁) Struct ⟨1, 17⟩ → Fun ((EEG‘𝑁) ∖ {∅}))
74, 6syl 17 . . . 4 (𝑁 ∈ ℕ → Fun ((EEG‘𝑁) ∖ {∅}))
8 structcnvcnv 15865 . . . . . 6 ((EEG‘𝑁) Struct ⟨1, 17⟩ → (EEG‘𝑁) = ((EEG‘𝑁) ∖ {∅}))
94, 8syl 17 . . . . 5 (𝑁 ∈ ℕ → (EEG‘𝑁) = ((EEG‘𝑁) ∖ {∅}))
109funeqd 5908 . . . 4 (𝑁 ∈ ℕ → (Fun (EEG‘𝑁) ↔ Fun ((EEG‘𝑁) ∖ {∅})))
117, 10mpbird 247 . . 3 (𝑁 ∈ ℕ → Fun (EEG‘𝑁))
12 opex 4930 . . . . . 6 ⟨(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn ⟨𝑥, 𝑦⟩ ∨ 𝑥 Btwn ⟨𝑧, 𝑦⟩ ∨ 𝑦 Btwn ⟨𝑥, 𝑧⟩)})⟩ ∈ V
1312prid2 4296 . . . . 5 ⟨(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn ⟨𝑥, 𝑦⟩ ∨ 𝑥 Btwn ⟨𝑧, 𝑦⟩ ∨ 𝑦 Btwn ⟨𝑥, 𝑧⟩)})⟩ ∈ {⟨(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩})⟩, ⟨(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn ⟨𝑥, 𝑦⟩ ∨ 𝑥 Btwn ⟨𝑧, 𝑦⟩ ∨ 𝑦 Btwn ⟨𝑥, 𝑧⟩)})⟩}
14 elun2 3779 . . . . 5 (⟨(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn ⟨𝑥, 𝑦⟩ ∨ 𝑥 Btwn ⟨𝑧, 𝑦⟩ ∨ 𝑦 Btwn ⟨𝑥, 𝑧⟩)})⟩ ∈ {⟨(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩})⟩, ⟨(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn ⟨𝑥, 𝑦⟩ ∨ 𝑥 Btwn ⟨𝑧, 𝑦⟩ ∨ 𝑦 Btwn ⟨𝑥, 𝑧⟩)})⟩} → ⟨(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn ⟨𝑥, 𝑦⟩ ∨ 𝑥 Btwn ⟨𝑧, 𝑦⟩ ∨ 𝑦 Btwn ⟨𝑥, 𝑧⟩)})⟩ ∈ ({⟨(Base‘ndx), (𝔼‘𝑁)⟩, ⟨(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥𝑖) − (𝑦𝑖))↑2))⟩} ∪ {⟨(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩})⟩, ⟨(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn ⟨𝑥, 𝑦⟩ ∨ 𝑥 Btwn ⟨𝑧, 𝑦⟩ ∨ 𝑦 Btwn ⟨𝑥, 𝑧⟩)})⟩}))
1513, 14ax-mp 5 . . . 4 ⟨(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn ⟨𝑥, 𝑦⟩ ∨ 𝑥 Btwn ⟨𝑧, 𝑦⟩ ∨ 𝑦 Btwn ⟨𝑥, 𝑧⟩)})⟩ ∈ ({⟨(Base‘ndx), (𝔼‘𝑁)⟩, ⟨(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥𝑖) − (𝑦𝑖))↑2))⟩} ∪ {⟨(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩})⟩, ⟨(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn ⟨𝑥, 𝑦⟩ ∨ 𝑥 Btwn ⟨𝑧, 𝑦⟩ ∨ 𝑦 Btwn ⟨𝑥, 𝑧⟩)})⟩})
16 eengv 25853 . . . 4 (𝑁 ∈ ℕ → (EEG‘𝑁) = ({⟨(Base‘ndx), (𝔼‘𝑁)⟩, ⟨(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥𝑖) − (𝑦𝑖))↑2))⟩} ∪ {⟨(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩})⟩, ⟨(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn ⟨𝑥, 𝑦⟩ ∨ 𝑥 Btwn ⟨𝑧, 𝑦⟩ ∨ 𝑦 Btwn ⟨𝑥, 𝑧⟩)})⟩}))
1715, 16syl5eleqr 2707 . . 3 (𝑁 ∈ ℕ → ⟨(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn ⟨𝑥, 𝑦⟩ ∨ 𝑥 Btwn ⟨𝑧, 𝑦⟩ ∨ 𝑦 Btwn ⟨𝑥, 𝑧⟩)})⟩ ∈ (EEG‘𝑁))
18 fvex 6199 . . . . 5 (𝔼‘𝑁) ∈ V
19 difexg 4806 . . . . . 6 ((𝔼‘𝑁) ∈ V → ((𝔼‘𝑁) ∖ {𝑥}) ∈ V)
2018, 19ax-mp 5 . . . . 5 ((𝔼‘𝑁) ∖ {𝑥}) ∈ V
2118, 20mpt2ex 7244 . . . 4 (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn ⟨𝑥, 𝑦⟩ ∨ 𝑥 Btwn ⟨𝑧, 𝑦⟩ ∨ 𝑦 Btwn ⟨𝑥, 𝑧⟩)}) ∈ V
2221a1i 11 . . 3 (𝑁 ∈ ℕ → (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn ⟨𝑥, 𝑦⟩ ∨ 𝑥 Btwn ⟨𝑧, 𝑦⟩ ∨ 𝑦 Btwn ⟨𝑥, 𝑧⟩)}) ∈ V)
231, 3, 11, 17, 22strfv2d 15899 . 2 (𝑁 ∈ ℕ → (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn ⟨𝑥, 𝑦⟩ ∨ 𝑥 Btwn ⟨𝑧, 𝑦⟩ ∨ 𝑦 Btwn ⟨𝑥, 𝑧⟩)}) = (LineG‘(EEG‘𝑁)))
24 eengbas 25855 . . . 4 (𝑁 ∈ ℕ → (𝔼‘𝑁) = (Base‘(EEG‘𝑁)))
25 elntg.1 . . . 4 𝑃 = (Base‘(EEG‘𝑁))
2624, 25syl6eqr 2673 . . 3 (𝑁 ∈ ℕ → (𝔼‘𝑁) = 𝑃)
2726difeq1d 3725 . . . 4 (𝑁 ∈ ℕ → ((𝔼‘𝑁) ∖ {𝑥}) = (𝑃 ∖ {𝑥}))
2827adantr 481 . . 3 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝔼‘𝑁) ∖ {𝑥}) = (𝑃 ∖ {𝑥}))
2926adantr 481 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}))) → (𝔼‘𝑁) = 𝑃)
30 simpll 790 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ)
31 elntg.2 . . . . . 6 𝐼 = (Itv‘(EEG‘𝑁))
32 simplrl 800 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → 𝑥 ∈ (𝔼‘𝑁))
3330, 26syl 17 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → (𝔼‘𝑁) = 𝑃)
3432, 33eleqtrd 2702 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → 𝑥𝑃)
35 simplrr 801 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}))
3635eldifad 3584 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → 𝑦 ∈ (𝔼‘𝑁))
3736, 33eleqtrd 2702 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → 𝑦𝑃)
38 simpr 477 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → 𝑧 ∈ (𝔼‘𝑁))
3938, 33eleqtrd 2702 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → 𝑧𝑃)
4030, 25, 31, 34, 37, 39ebtwntg 25856 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → (𝑧 Btwn ⟨𝑥, 𝑦⟩ ↔ 𝑧 ∈ (𝑥𝐼𝑦)))
4130, 25, 31, 39, 37, 34ebtwntg 25856 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → (𝑥 Btwn ⟨𝑧, 𝑦⟩ ↔ 𝑥 ∈ (𝑧𝐼𝑦)))
4230, 25, 31, 34, 39, 37ebtwntg 25856 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → (𝑦 Btwn ⟨𝑥, 𝑧⟩ ↔ 𝑦 ∈ (𝑥𝐼𝑧)))
4340, 41, 423orbi123d 1397 . . . 4 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → ((𝑧 Btwn ⟨𝑥, 𝑦⟩ ∨ 𝑥 Btwn ⟨𝑧, 𝑦⟩ ∨ 𝑦 Btwn ⟨𝑥, 𝑧⟩) ↔ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))
4429, 43rabeqbidva 3194 . . 3 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}))) → {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn ⟨𝑥, 𝑦⟩ ∨ 𝑥 Btwn ⟨𝑧, 𝑦⟩ ∨ 𝑦 Btwn ⟨𝑥, 𝑧⟩)} = {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})
4526, 28, 44mpt2eq123dva 6713 . 2 (𝑁 ∈ ℕ → (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn ⟨𝑥, 𝑦⟩ ∨ 𝑥 Btwn ⟨𝑧, 𝑦⟩ ∨ 𝑦 Btwn ⟨𝑥, 𝑧⟩)}) = (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}))
4623, 45eqtr3d 2657 1 (𝑁 ∈ ℕ → (LineG‘(EEG‘𝑁)) = (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3o 1036  w3a 1037   = wceq 1482  wcel 1989  {crab 2915  Vcvv 3198  cdif 3569  cun 3570  wss 3572  c0 3913  {csn 4175  {cpr 4177  cop 4181   class class class wbr 4651  ccnv 5111  dom cdm 5112  Fun wfun 5880  cfv 5886  (class class class)co 6647  cmpt2 6649  1c1 9934  cle 10072  cmin 10263  cn 11017  2c2 11067  7c7 11072  cdc 11490  ...cfz 12323  cexp 12855  Σcsu 14410   Struct cstr 15847  ndxcnx 15848  Basecbs 15851  distcds 15944  Itvcitv 25329  LineGclng 25330  𝔼cee 25762   Btwn cbtwn 25763  EEGceeng 25851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-rep 4769  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946  ax-cnex 9989  ax-resscn 9990  ax-1cn 9991  ax-icn 9992  ax-addcl 9993  ax-addrcl 9994  ax-mulcl 9995  ax-mulrcl 9996  ax-mulcom 9997  ax-addass 9998  ax-mulass 9999  ax-distr 10000  ax-i2m1 10001  ax-1ne0 10002  ax-1rid 10003  ax-rnegex 10004  ax-rrecex 10005  ax-cnre 10006  ax-pre-lttri 10007  ax-pre-lttrn 10008  ax-pre-ltadd 10009  ax-pre-mulgt0 10010
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-nel 2897  df-ral 2916  df-rex 2917  df-reu 2918  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-pss 3588  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-tp 4180  df-op 4182  df-uni 4435  df-int 4474  df-iun 4520  df-br 4652  df-opab 4711  df-mpt 4728  df-tr 4751  df-id 5022  df-eprel 5027  df-po 5033  df-so 5034  df-fr 5071  df-we 5073  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-pred 5678  df-ord 5724  df-on 5725  df-lim 5726  df-suc 5727  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-riota 6608  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-om 7063  df-1st 7165  df-2nd 7166  df-wrecs 7404  df-recs 7465  df-rdg 7503  df-1o 7557  df-oadd 7561  df-er 7739  df-en 7953  df-dom 7954  df-sdom 7955  df-fin 7956  df-pnf 10073  df-mnf 10074  df-xr 10075  df-ltxr 10076  df-le 10077  df-sub 10265  df-neg 10266  df-nn 11018  df-2 11076  df-3 11077  df-4 11078  df-5 11079  df-6 11080  df-7 11081  df-8 11082  df-9 11083  df-n0 11290  df-z 11375  df-dec 11491  df-uz 11685  df-fz 12324  df-seq 12797  df-sum 14411  df-struct 15853  df-ndx 15854  df-slot 15855  df-base 15857  df-ds 15958  df-itv 25331  df-lng 25332  df-eeng 25852
This theorem is referenced by:  eengtrkg  25859
  Copyright terms: Public domain W3C validator