MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elom Structured version   Visualization version   GIF version

Theorem elom 7016
Description: Membership in omega. The left conjunct can be eliminated if we assume the Axiom of Infinity; see elom3 8490. (Contributed by NM, 15-May-1994.)
Assertion
Ref Expression
elom (𝐴 ∈ ω ↔ (𝐴 ∈ On ∧ ∀𝑥(Lim 𝑥𝐴𝑥)))
Distinct variable group:   𝑥,𝐴

Proof of Theorem elom
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2692 . . . 4 (𝑦 = 𝐴 → (𝑦𝑥𝐴𝑥))
21imbi2d 330 . . 3 (𝑦 = 𝐴 → ((Lim 𝑥𝑦𝑥) ↔ (Lim 𝑥𝐴𝑥)))
32albidv 1851 . 2 (𝑦 = 𝐴 → (∀𝑥(Lim 𝑥𝑦𝑥) ↔ ∀𝑥(Lim 𝑥𝐴𝑥)))
4 df-om 7014 . 2 ω = {𝑦 ∈ On ∣ ∀𝑥(Lim 𝑥𝑦𝑥)}
53, 4elrab2 3353 1 (𝐴 ∈ ω ↔ (𝐴 ∈ On ∧ ∀𝑥(Lim 𝑥𝐴𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wal 1478   = wceq 1480  wcel 1992  Oncon0 5685  Lim wlim 5686  ωcom 7013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-rab 2921  df-v 3193  df-om 7014
This theorem is referenced by:  limomss  7018  ordom  7022  nnlim  7026  limom  7028  elom3  8490  dfom5b  31653
  Copyright terms: Public domain W3C validator