MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elopg Structured version   Visualization version   GIF version

Theorem elopg 5349
Description: Characterization of the elements of an ordered pair. Closed form of elop 5350. (Contributed by BJ, 22-Jun-2019.) (Avoid depending on this detail.)
Assertion
Ref Expression
elopg ((𝐴𝑉𝐵𝑊) → (𝐶 ∈ ⟨𝐴, 𝐵⟩ ↔ (𝐶 = {𝐴} ∨ 𝐶 = {𝐴, 𝐵})))

Proof of Theorem elopg
StepHypRef Expression
1 dfopg 4793 . 2 ((𝐴𝑉𝐵𝑊) → ⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}})
2 eleq2 2899 . . 3 (⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}} → (𝐶 ∈ ⟨𝐴, 𝐵⟩ ↔ 𝐶 ∈ {{𝐴}, {𝐴, 𝐵}}))
3 snex 5322 . . . 4 {𝐴} ∈ V
4 prex 5323 . . . 4 {𝐴, 𝐵} ∈ V
53, 4elpr2 4583 . . 3 (𝐶 ∈ {{𝐴}, {𝐴, 𝐵}} ↔ (𝐶 = {𝐴} ∨ 𝐶 = {𝐴, 𝐵}))
62, 5syl6bb 289 . 2 (⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}} → (𝐶 ∈ ⟨𝐴, 𝐵⟩ ↔ (𝐶 = {𝐴} ∨ 𝐶 = {𝐴, 𝐵})))
71, 6syl 17 1 ((𝐴𝑉𝐵𝑊) → (𝐶 ∈ ⟨𝐴, 𝐵⟩ ↔ (𝐶 = {𝐴} ∨ 𝐶 = {𝐴, 𝐵})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843   = wceq 1531  wcel 2108  {csn 4559  {cpr 4561  cop 4565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pr 5320
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-v 3495  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-sn 4560  df-pr 4562  df-op 4566
This theorem is referenced by:  elop  5350  bj-inftyexpidisj  34484
  Copyright terms: Public domain W3C validator