![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elorrvc | Structured version Visualization version GIF version |
Description: Elementhood of a preimage for a real-valued random variable. (Contributed by Thierry Arnoux, 21-Jan-2017.) |
Ref | Expression |
---|---|
orrvccel.1 | ⊢ (𝜑 → 𝑃 ∈ Prob) |
orrvccel.2 | ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) |
orrvccel.4 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
elorrvc | ⊢ ((𝜑 ∧ 𝑧 ∈ ∪ dom 𝑃) → (𝑧 ∈ (𝑋∘RV/𝑐𝑅𝐴) ↔ (𝑋‘𝑧)𝑅𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orrvccel.1 | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ Prob) | |
2 | orrvccel.2 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) | |
3 | 1, 2 | rrvdm 30636 | . . . . 5 ⊢ (𝜑 → dom 𝑋 = ∪ dom 𝑃) |
4 | 3 | eleq2d 2716 | . . . 4 ⊢ (𝜑 → (𝑧 ∈ dom 𝑋 ↔ 𝑧 ∈ ∪ dom 𝑃)) |
5 | 4 | biimprd 238 | . . 3 ⊢ (𝜑 → (𝑧 ∈ ∪ dom 𝑃 → 𝑧 ∈ dom 𝑋)) |
6 | 5 | imdistani 726 | . 2 ⊢ ((𝜑 ∧ 𝑧 ∈ ∪ dom 𝑃) → (𝜑 ∧ 𝑧 ∈ dom 𝑋)) |
7 | 1, 2 | rrvfn 30635 | . . . 4 ⊢ (𝜑 → 𝑋 Fn ∪ dom 𝑃) |
8 | fnfun 6026 | . . . 4 ⊢ (𝑋 Fn ∪ dom 𝑃 → Fun 𝑋) | |
9 | 7, 8 | syl 17 | . . 3 ⊢ (𝜑 → Fun 𝑋) |
10 | orrvccel.4 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
11 | 9, 2, 10 | elorvc 30649 | . 2 ⊢ ((𝜑 ∧ 𝑧 ∈ dom 𝑋) → (𝑧 ∈ (𝑋∘RV/𝑐𝑅𝐴) ↔ (𝑋‘𝑧)𝑅𝐴)) |
12 | 6, 11 | syl 17 | 1 ⊢ ((𝜑 ∧ 𝑧 ∈ ∪ dom 𝑃) → (𝑧 ∈ (𝑋∘RV/𝑐𝑅𝐴) ↔ (𝑋‘𝑧)𝑅𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∈ wcel 2030 ∪ cuni 4468 class class class wbr 4685 dom cdm 5143 Fun wfun 5920 Fn wfn 5921 ‘cfv 5926 (class class class)co 6690 Probcprb 30597 rRndVarcrrv 30630 ∘RV/𝑐corvc 30645 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-pre-lttri 10048 ax-pre-lttrn 10049 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-fal 1529 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-po 5064 df-so 5065 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-1st 7210 df-2nd 7211 df-er 7787 df-map 7901 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-ioo 12217 df-topgen 16151 df-top 20747 df-bases 20798 df-esum 30218 df-siga 30299 df-sigagen 30330 df-brsiga 30373 df-meas 30387 df-mbfm 30441 df-prob 30598 df-rrv 30631 df-orvc 30646 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |