Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpadd0 Structured version   Visualization version   GIF version

Theorem elpadd0 36944
Description: Member of projective subspace sum with at least one empty set. (Contributed by NM, 29-Dec-2011.)
Hypotheses
Ref Expression
padd0.a 𝐴 = (Atoms‘𝐾)
padd0.p + = (+𝑃𝐾)
Assertion
Ref Expression
elpadd0 (((𝐾𝐵𝑋𝐴𝑌𝐴) ∧ ¬ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑆 ∈ (𝑋 + 𝑌) ↔ (𝑆𝑋𝑆𝑌)))

Proof of Theorem elpadd0
Dummy variables 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 neanior 3109 . . . 4 ((𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅) ↔ ¬ (𝑋 = ∅ ∨ 𝑌 = ∅))
21bicomi 226 . . 3 (¬ (𝑋 = ∅ ∨ 𝑌 = ∅) ↔ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅))
32con1bii 359 . 2 (¬ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅) ↔ (𝑋 = ∅ ∨ 𝑌 = ∅))
4 eqid 2821 . . . 4 (le‘𝐾) = (le‘𝐾)
5 eqid 2821 . . . 4 (join‘𝐾) = (join‘𝐾)
6 padd0.a . . . 4 𝐴 = (Atoms‘𝐾)
7 padd0.p . . . 4 + = (+𝑃𝐾)
84, 5, 6, 7elpadd 36934 . . 3 ((𝐾𝐵𝑋𝐴𝑌𝐴) → (𝑆 ∈ (𝑋 + 𝑌) ↔ ((𝑆𝑋𝑆𝑌) ∨ (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟)))))
9 rex0 4316 . . . . . . . 8 ¬ ∃𝑞 ∈ ∅ ∃𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟)
10 rexeq 3406 . . . . . . . 8 (𝑋 = ∅ → (∃𝑞𝑋𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟) ↔ ∃𝑞 ∈ ∅ ∃𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟)))
119, 10mtbiri 329 . . . . . . 7 (𝑋 = ∅ → ¬ ∃𝑞𝑋𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟))
12 rex0 4316 . . . . . . . . . 10 ¬ ∃𝑟 ∈ ∅ 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟)
1312a1i 11 . . . . . . . . 9 (𝑞𝑋 → ¬ ∃𝑟 ∈ ∅ 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟))
1413nrex 3269 . . . . . . . 8 ¬ ∃𝑞𝑋𝑟 ∈ ∅ 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟)
15 rexeq 3406 . . . . . . . . 9 (𝑌 = ∅ → (∃𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟) ↔ ∃𝑟 ∈ ∅ 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟)))
1615rexbidv 3297 . . . . . . . 8 (𝑌 = ∅ → (∃𝑞𝑋𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟) ↔ ∃𝑞𝑋𝑟 ∈ ∅ 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟)))
1714, 16mtbiri 329 . . . . . . 7 (𝑌 = ∅ → ¬ ∃𝑞𝑋𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟))
1811, 17jaoi 853 . . . . . 6 ((𝑋 = ∅ ∨ 𝑌 = ∅) → ¬ ∃𝑞𝑋𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟))
1918intnand 491 . . . . 5 ((𝑋 = ∅ ∨ 𝑌 = ∅) → ¬ (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟)))
20 biorf 933 . . . . 5 (¬ (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟)) → ((𝑆𝑋𝑆𝑌) ↔ ((𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟)) ∨ (𝑆𝑋𝑆𝑌))))
2119, 20syl 17 . . . 4 ((𝑋 = ∅ ∨ 𝑌 = ∅) → ((𝑆𝑋𝑆𝑌) ↔ ((𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟)) ∨ (𝑆𝑋𝑆𝑌))))
22 orcom 866 . . . 4 (((𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟)) ∨ (𝑆𝑋𝑆𝑌)) ↔ ((𝑆𝑋𝑆𝑌) ∨ (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟))))
2321, 22syl6rbb 290 . . 3 ((𝑋 = ∅ ∨ 𝑌 = ∅) → (((𝑆𝑋𝑆𝑌) ∨ (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟))) ↔ (𝑆𝑋𝑆𝑌)))
248, 23sylan9bb 512 . 2 (((𝐾𝐵𝑋𝐴𝑌𝐴) ∧ (𝑋 = ∅ ∨ 𝑌 = ∅)) → (𝑆 ∈ (𝑋 + 𝑌) ↔ (𝑆𝑋𝑆𝑌)))
253, 24sylan2b 595 1 (((𝐾𝐵𝑋𝐴𝑌𝐴) ∧ ¬ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑆 ∈ (𝑋 + 𝑌) ↔ (𝑆𝑋𝑆𝑌)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1533  wcel 2110  wne 3016  wrex 3139  wss 3935  c0 4290   class class class wbr 5065  cfv 6354  (class class class)co 7155  lecple 16571  joincjn 17553  Atomscatm 36398  +𝑃cpadd 36930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-ov 7158  df-oprab 7159  df-mpo 7160  df-1st 7688  df-2nd 7689  df-padd 36931
This theorem is referenced by:  paddval0  36945
  Copyright terms: Public domain W3C validator