Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpaddn0 Structured version   Visualization version   GIF version

Theorem elpaddn0 35404
Description: Member of projective subspace sum of nonempty sets. (Contributed by NM, 3-Jan-2012.)
Hypotheses
Ref Expression
paddfval.l = (le‘𝐾)
paddfval.j = (join‘𝐾)
paddfval.a 𝐴 = (Atoms‘𝐾)
paddfval.p + = (+𝑃𝐾)
Assertion
Ref Expression
elpaddn0 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑆 ∈ (𝑋 + 𝑌) ↔ (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟))))
Distinct variable groups:   𝑟,𝑞,𝐾   𝑋,𝑞   𝑌,𝑞,𝑟   𝑆,𝑞,𝑟   𝐴,𝑞,𝑟   ,𝑞,𝑟   ,𝑞,𝑟   𝑋,𝑟
Allowed substitution hints:   + (𝑟,𝑞)

Proof of Theorem elpaddn0
StepHypRef Expression
1 paddfval.l . . . 4 = (le‘𝐾)
2 paddfval.j . . . 4 = (join‘𝐾)
3 paddfval.a . . . 4 𝐴 = (Atoms‘𝐾)
4 paddfval.p . . . 4 + = (+𝑃𝐾)
51, 2, 3, 4elpadd 35403 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) → (𝑆 ∈ (𝑋 + 𝑌) ↔ ((𝑆𝑋𝑆𝑌) ∨ (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟)))))
65adantr 480 . 2 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑆 ∈ (𝑋 + 𝑌) ↔ ((𝑆𝑋𝑆𝑌) ∨ (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟)))))
7 simpl2 1085 . . . . . 6 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → 𝑋𝐴)
87sseld 3635 . . . . 5 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑆𝑋𝑆𝐴))
9 simpll1 1120 . . . . . . . . . . . . 13 ((((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑆𝑋) ∧ 𝑟𝑌) → 𝐾 ∈ Lat)
10 ssel2 3631 . . . . . . . . . . . . . . . 16 ((𝑋𝐴𝑆𝑋) → 𝑆𝐴)
11103ad2antl2 1244 . . . . . . . . . . . . . . 15 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑆𝑋) → 𝑆𝐴)
1211adantr 480 . . . . . . . . . . . . . 14 ((((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑆𝑋) ∧ 𝑟𝑌) → 𝑆𝐴)
13 eqid 2651 . . . . . . . . . . . . . . 15 (Base‘𝐾) = (Base‘𝐾)
1413, 3atbase 34894 . . . . . . . . . . . . . 14 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
1512, 14syl 17 . . . . . . . . . . . . 13 ((((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑆𝑋) ∧ 𝑟𝑌) → 𝑆 ∈ (Base‘𝐾))
16 simpl3 1086 . . . . . . . . . . . . . . 15 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑆𝑋) → 𝑌𝐴)
1716sselda 3636 . . . . . . . . . . . . . 14 ((((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑆𝑋) ∧ 𝑟𝑌) → 𝑟𝐴)
1813, 3atbase 34894 . . . . . . . . . . . . . 14 (𝑟𝐴𝑟 ∈ (Base‘𝐾))
1917, 18syl 17 . . . . . . . . . . . . 13 ((((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑆𝑋) ∧ 𝑟𝑌) → 𝑟 ∈ (Base‘𝐾))
2013, 1, 2latlej1 17107 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ 𝑆 ∈ (Base‘𝐾) ∧ 𝑟 ∈ (Base‘𝐾)) → 𝑆 (𝑆 𝑟))
219, 15, 19, 20syl3anc 1366 . . . . . . . . . . . 12 ((((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑆𝑋) ∧ 𝑟𝑌) → 𝑆 (𝑆 𝑟))
2221reximdva0 3966 . . . . . . . . . . 11 ((((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑆𝑋) ∧ 𝑌 ≠ ∅) → ∃𝑟𝑌 𝑆 (𝑆 𝑟))
2322exp31 629 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) → (𝑆𝑋 → (𝑌 ≠ ∅ → ∃𝑟𝑌 𝑆 (𝑆 𝑟))))
2423com23 86 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) → (𝑌 ≠ ∅ → (𝑆𝑋 → ∃𝑟𝑌 𝑆 (𝑆 𝑟))))
2524imp 444 . . . . . . . 8 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑌 ≠ ∅) → (𝑆𝑋 → ∃𝑟𝑌 𝑆 (𝑆 𝑟)))
2625ancld 575 . . . . . . 7 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑌 ≠ ∅) → (𝑆𝑋 → (𝑆𝑋 ∧ ∃𝑟𝑌 𝑆 (𝑆 𝑟))))
27 oveq1 6697 . . . . . . . . . 10 (𝑞 = 𝑆 → (𝑞 𝑟) = (𝑆 𝑟))
2827breq2d 4697 . . . . . . . . 9 (𝑞 = 𝑆 → (𝑆 (𝑞 𝑟) ↔ 𝑆 (𝑆 𝑟)))
2928rexbidv 3081 . . . . . . . 8 (𝑞 = 𝑆 → (∃𝑟𝑌 𝑆 (𝑞 𝑟) ↔ ∃𝑟𝑌 𝑆 (𝑆 𝑟)))
3029rspcev 3340 . . . . . . 7 ((𝑆𝑋 ∧ ∃𝑟𝑌 𝑆 (𝑆 𝑟)) → ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟))
3126, 30syl6 35 . . . . . 6 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑌 ≠ ∅) → (𝑆𝑋 → ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟)))
3231adantrl 752 . . . . 5 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑆𝑋 → ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟)))
338, 32jcad 554 . . . 4 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑆𝑋 → (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟))))
34 simpl3 1086 . . . . . 6 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → 𝑌𝐴)
3534sseld 3635 . . . . 5 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑆𝑌𝑆𝐴))
36 simpll1 1120 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑞𝑋) ∧ 𝑆𝑌) → 𝐾 ∈ Lat)
37 ssel2 3631 . . . . . . . . . . . . . . . . . 18 ((𝑋𝐴𝑞𝑋) → 𝑞𝐴)
38373ad2antl2 1244 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑞𝑋) → 𝑞𝐴)
3938adantr 480 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑞𝑋) ∧ 𝑆𝑌) → 𝑞𝐴)
4013, 3atbase 34894 . . . . . . . . . . . . . . . 16 (𝑞𝐴𝑞 ∈ (Base‘𝐾))
4139, 40syl 17 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑞𝑋) ∧ 𝑆𝑌) → 𝑞 ∈ (Base‘𝐾))
42 simpl3 1086 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑞𝑋) → 𝑌𝐴)
4342sselda 3636 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑞𝑋) ∧ 𝑆𝑌) → 𝑆𝐴)
4443, 14syl 17 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑞𝑋) ∧ 𝑆𝑌) → 𝑆 ∈ (Base‘𝐾))
4513, 1, 2latlej2 17108 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Lat ∧ 𝑞 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) → 𝑆 (𝑞 𝑆))
4636, 41, 44, 45syl3anc 1366 . . . . . . . . . . . . . 14 ((((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑞𝑋) ∧ 𝑆𝑌) → 𝑆 (𝑞 𝑆))
4746ex 449 . . . . . . . . . . . . 13 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑞𝑋) → (𝑆𝑌𝑆 (𝑞 𝑆)))
4847ancld 575 . . . . . . . . . . . 12 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑞𝑋) → (𝑆𝑌 → (𝑆𝑌𝑆 (𝑞 𝑆))))
49 oveq2 6698 . . . . . . . . . . . . . 14 (𝑟 = 𝑆 → (𝑞 𝑟) = (𝑞 𝑆))
5049breq2d 4697 . . . . . . . . . . . . 13 (𝑟 = 𝑆 → (𝑆 (𝑞 𝑟) ↔ 𝑆 (𝑞 𝑆)))
5150rspcev 3340 . . . . . . . . . . . 12 ((𝑆𝑌𝑆 (𝑞 𝑆)) → ∃𝑟𝑌 𝑆 (𝑞 𝑟))
5248, 51syl6 35 . . . . . . . . . . 11 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑞𝑋) → (𝑆𝑌 → ∃𝑟𝑌 𝑆 (𝑞 𝑟)))
5352impancom 455 . . . . . . . . . 10 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑆𝑌) → (𝑞𝑋 → ∃𝑟𝑌 𝑆 (𝑞 𝑟)))
5453ancld 575 . . . . . . . . 9 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑆𝑌) → (𝑞𝑋 → (𝑞𝑋 ∧ ∃𝑟𝑌 𝑆 (𝑞 𝑟))))
5554eximdv 1886 . . . . . . . 8 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑆𝑌) → (∃𝑞 𝑞𝑋 → ∃𝑞(𝑞𝑋 ∧ ∃𝑟𝑌 𝑆 (𝑞 𝑟))))
56 n0 3964 . . . . . . . 8 (𝑋 ≠ ∅ ↔ ∃𝑞 𝑞𝑋)
57 df-rex 2947 . . . . . . . 8 (∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟) ↔ ∃𝑞(𝑞𝑋 ∧ ∃𝑟𝑌 𝑆 (𝑞 𝑟)))
5855, 56, 573imtr4g 285 . . . . . . 7 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑆𝑌) → (𝑋 ≠ ∅ → ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟)))
5958impancom 455 . . . . . 6 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑋 ≠ ∅) → (𝑆𝑌 → ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟)))
6059adantrr 753 . . . . 5 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑆𝑌 → ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟)))
6135, 60jcad 554 . . . 4 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑆𝑌 → (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟))))
6233, 61jaod 394 . . 3 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → ((𝑆𝑋𝑆𝑌) → (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟))))
63 pm4.72 938 . . 3 (((𝑆𝑋𝑆𝑌) → (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟))) ↔ ((𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟)) ↔ ((𝑆𝑋𝑆𝑌) ∨ (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟)))))
6462, 63sylib 208 . 2 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → ((𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟)) ↔ ((𝑆𝑋𝑆𝑌) ∨ (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟)))))
656, 64bitr4d 271 1 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑆 ∈ (𝑋 + 𝑌) ↔ (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 382  wa 383  w3a 1054   = wceq 1523  wex 1744  wcel 2030  wne 2823  wrex 2942  wss 3607  c0 3948   class class class wbr 4685  cfv 5926  (class class class)co 6690  Basecbs 15904  lecple 15995  joincjn 16991  Latclat 17092  Atomscatm 34868  +𝑃cpadd 35399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-1st 7210  df-2nd 7211  df-lub 17021  df-join 17023  df-lat 17093  df-ats 34872  df-padd 35400
This theorem is referenced by:  paddvaln0N  35405  elpaddri  35406  elpaddat  35408  paddasslem15  35438  paddasslem16  35439  pmodlem2  35451  pmapjat1  35457
  Copyright terms: Public domain W3C validator