![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elpaddri | Structured version Visualization version GIF version |
Description: Condition implying membership in a projective subspace sum. (Contributed by NM, 8-Jan-2012.) |
Ref | Expression |
---|---|
paddfval.l | ⊢ ≤ = (le‘𝐾) |
paddfval.j | ⊢ ∨ = (join‘𝐾) |
paddfval.a | ⊢ 𝐴 = (Atoms‘𝐾) |
paddfval.p | ⊢ + = (+𝑃‘𝐾) |
Ref | Expression |
---|---|
elpaddri | ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑄 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌) ∧ (𝑆 ∈ 𝐴 ∧ 𝑆 ≤ (𝑄 ∨ 𝑅))) → 𝑆 ∈ (𝑋 + 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3l 1220 | . 2 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑄 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌) ∧ (𝑆 ∈ 𝐴 ∧ 𝑆 ≤ (𝑄 ∨ 𝑅))) → 𝑆 ∈ 𝐴) | |
2 | simp2l 1218 | . . 3 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑄 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌) ∧ (𝑆 ∈ 𝐴 ∧ 𝑆 ≤ (𝑄 ∨ 𝑅))) → 𝑄 ∈ 𝑋) | |
3 | simp2r 1219 | . . 3 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑄 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌) ∧ (𝑆 ∈ 𝐴 ∧ 𝑆 ≤ (𝑄 ∨ 𝑅))) → 𝑅 ∈ 𝑌) | |
4 | simp3r 1221 | . . 3 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑄 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌) ∧ (𝑆 ∈ 𝐴 ∧ 𝑆 ≤ (𝑄 ∨ 𝑅))) → 𝑆 ≤ (𝑄 ∨ 𝑅)) | |
5 | oveq1 6772 | . . . . 5 ⊢ (𝑞 = 𝑄 → (𝑞 ∨ 𝑟) = (𝑄 ∨ 𝑟)) | |
6 | 5 | breq2d 4772 | . . . 4 ⊢ (𝑞 = 𝑄 → (𝑆 ≤ (𝑞 ∨ 𝑟) ↔ 𝑆 ≤ (𝑄 ∨ 𝑟))) |
7 | oveq2 6773 | . . . . 5 ⊢ (𝑟 = 𝑅 → (𝑄 ∨ 𝑟) = (𝑄 ∨ 𝑅)) | |
8 | 7 | breq2d 4772 | . . . 4 ⊢ (𝑟 = 𝑅 → (𝑆 ≤ (𝑄 ∨ 𝑟) ↔ 𝑆 ≤ (𝑄 ∨ 𝑅))) |
9 | 6, 8 | rspc2ev 3428 | . . 3 ⊢ ((𝑄 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌 ∧ 𝑆 ≤ (𝑄 ∨ 𝑅)) → ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑌 𝑆 ≤ (𝑞 ∨ 𝑟)) |
10 | 2, 3, 4, 9 | syl3anc 1439 | . 2 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑄 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌) ∧ (𝑆 ∈ 𝐴 ∧ 𝑆 ≤ (𝑄 ∨ 𝑅))) → ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑌 𝑆 ≤ (𝑞 ∨ 𝑟)) |
11 | ne0i 4029 | . . . . . 6 ⊢ (𝑄 ∈ 𝑋 → 𝑋 ≠ ∅) | |
12 | ne0i 4029 | . . . . . 6 ⊢ (𝑅 ∈ 𝑌 → 𝑌 ≠ ∅) | |
13 | 11, 12 | anim12i 591 | . . . . 5 ⊢ ((𝑄 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌) → (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) |
14 | 13 | anim2i 594 | . . . 4 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑄 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌)) → ((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅))) |
15 | 14 | 3adant3 1124 | . . 3 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑄 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌) ∧ (𝑆 ∈ 𝐴 ∧ 𝑆 ≤ (𝑄 ∨ 𝑅))) → ((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅))) |
16 | paddfval.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
17 | paddfval.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
18 | paddfval.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
19 | paddfval.p | . . . 4 ⊢ + = (+𝑃‘𝐾) | |
20 | 16, 17, 18, 19 | elpaddn0 35506 | . . 3 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑆 ∈ (𝑋 + 𝑌) ↔ (𝑆 ∈ 𝐴 ∧ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑌 𝑆 ≤ (𝑞 ∨ 𝑟)))) |
21 | 15, 20 | syl 17 | . 2 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑄 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌) ∧ (𝑆 ∈ 𝐴 ∧ 𝑆 ≤ (𝑄 ∨ 𝑅))) → (𝑆 ∈ (𝑋 + 𝑌) ↔ (𝑆 ∈ 𝐴 ∧ ∃𝑞 ∈ 𝑋 ∃𝑟 ∈ 𝑌 𝑆 ≤ (𝑞 ∨ 𝑟)))) |
22 | 1, 10, 21 | mpbir2and 995 | 1 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑄 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌) ∧ (𝑆 ∈ 𝐴 ∧ 𝑆 ≤ (𝑄 ∨ 𝑅))) → 𝑆 ∈ (𝑋 + 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1072 = wceq 1596 ∈ wcel 2103 ≠ wne 2896 ∃wrex 3015 ⊆ wss 3680 ∅c0 4023 class class class wbr 4760 ‘cfv 6001 (class class class)co 6765 lecple 16071 joincjn 17066 Latclat 17167 Atomscatm 34970 +𝑃cpadd 35501 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-rep 4879 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-ral 3019 df-rex 3020 df-reu 3021 df-rab 3023 df-v 3306 df-sbc 3542 df-csb 3640 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-op 4292 df-uni 4545 df-iun 4630 df-br 4761 df-opab 4821 df-mpt 4838 df-id 5128 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-res 5230 df-ima 5231 df-iota 5964 df-fun 6003 df-fn 6004 df-f 6005 df-f1 6006 df-fo 6007 df-f1o 6008 df-fv 6009 df-riota 6726 df-ov 6768 df-oprab 6769 df-mpt2 6770 df-1st 7285 df-2nd 7286 df-lub 17096 df-join 17098 df-lat 17168 df-ats 34974 df-padd 35502 |
This theorem is referenced by: elpaddatriN 35509 paddasslem8 35533 paddasslem12 35537 paddasslem13 35538 pmodlem1 35552 osumcllem5N 35666 pexmidlem2N 35677 |
Copyright terms: Public domain | W3C validator |