Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpaddri Structured version   Visualization version   GIF version

Theorem elpaddri 34565
Description: Condition implying membership in a projective subspace sum. (Contributed by NM, 8-Jan-2012.)
Hypotheses
Ref Expression
paddfval.l = (le‘𝐾)
paddfval.j = (join‘𝐾)
paddfval.a 𝐴 = (Atoms‘𝐾)
paddfval.p + = (+𝑃𝐾)
Assertion
Ref Expression
elpaddri (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑄𝑋𝑅𝑌) ∧ (𝑆𝐴𝑆 (𝑄 𝑅))) → 𝑆 ∈ (𝑋 + 𝑌))

Proof of Theorem elpaddri
Dummy variables 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3l 1087 . 2 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑄𝑋𝑅𝑌) ∧ (𝑆𝐴𝑆 (𝑄 𝑅))) → 𝑆𝐴)
2 simp2l 1085 . . 3 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑄𝑋𝑅𝑌) ∧ (𝑆𝐴𝑆 (𝑄 𝑅))) → 𝑄𝑋)
3 simp2r 1086 . . 3 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑄𝑋𝑅𝑌) ∧ (𝑆𝐴𝑆 (𝑄 𝑅))) → 𝑅𝑌)
4 simp3r 1088 . . 3 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑄𝑋𝑅𝑌) ∧ (𝑆𝐴𝑆 (𝑄 𝑅))) → 𝑆 (𝑄 𝑅))
5 oveq1 6611 . . . . 5 (𝑞 = 𝑄 → (𝑞 𝑟) = (𝑄 𝑟))
65breq2d 4625 . . . 4 (𝑞 = 𝑄 → (𝑆 (𝑞 𝑟) ↔ 𝑆 (𝑄 𝑟)))
7 oveq2 6612 . . . . 5 (𝑟 = 𝑅 → (𝑄 𝑟) = (𝑄 𝑅))
87breq2d 4625 . . . 4 (𝑟 = 𝑅 → (𝑆 (𝑄 𝑟) ↔ 𝑆 (𝑄 𝑅)))
96, 8rspc2ev 3308 . . 3 ((𝑄𝑋𝑅𝑌𝑆 (𝑄 𝑅)) → ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟))
102, 3, 4, 9syl3anc 1323 . 2 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑄𝑋𝑅𝑌) ∧ (𝑆𝐴𝑆 (𝑄 𝑅))) → ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟))
11 ne0i 3897 . . . . . 6 (𝑄𝑋𝑋 ≠ ∅)
12 ne0i 3897 . . . . . 6 (𝑅𝑌𝑌 ≠ ∅)
1311, 12anim12i 589 . . . . 5 ((𝑄𝑋𝑅𝑌) → (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅))
1413anim2i 592 . . . 4 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑄𝑋𝑅𝑌)) → ((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)))
15143adant3 1079 . . 3 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑄𝑋𝑅𝑌) ∧ (𝑆𝐴𝑆 (𝑄 𝑅))) → ((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)))
16 paddfval.l . . . 4 = (le‘𝐾)
17 paddfval.j . . . 4 = (join‘𝐾)
18 paddfval.a . . . 4 𝐴 = (Atoms‘𝐾)
19 paddfval.p . . . 4 + = (+𝑃𝐾)
2016, 17, 18, 19elpaddn0 34563 . . 3 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑆 ∈ (𝑋 + 𝑌) ↔ (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟))))
2115, 20syl 17 . 2 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑄𝑋𝑅𝑌) ∧ (𝑆𝐴𝑆 (𝑄 𝑅))) → (𝑆 ∈ (𝑋 + 𝑌) ↔ (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆 (𝑞 𝑟))))
221, 10, 21mpbir2and 956 1 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑄𝑋𝑅𝑌) ∧ (𝑆𝐴𝑆 (𝑄 𝑅))) → 𝑆 ∈ (𝑋 + 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  wrex 2908  wss 3555  c0 3891   class class class wbr 4613  cfv 5847  (class class class)co 6604  lecple 15869  joincjn 16865  Latclat 16966  Atomscatm 34027  +𝑃cpadd 34558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-1st 7113  df-2nd 7114  df-lub 16895  df-join 16897  df-lat 16967  df-ats 34031  df-padd 34559
This theorem is referenced by:  elpaddatriN  34566  paddasslem8  34590  paddasslem12  34594  paddasslem13  34595  pmodlem1  34609  osumcllem5N  34723  pexmidlem2N  34734
  Copyright terms: Public domain W3C validator