Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpell1qr2 Structured version   Visualization version   GIF version

Theorem elpell1qr2 36916
Description: The first quadrant solutions are precisely the positive Pell solutions which are at least one. (Contributed by Stefan O'Rear, 18-Sep-2014.)
Assertion
Ref Expression
elpell1qr2 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell1QR‘𝐷) ↔ (𝐴 ∈ (Pell14QR‘𝐷) ∧ 1 ≤ 𝐴)))

Proof of Theorem elpell1qr2
StepHypRef Expression
1 pell1qrss14 36912 . . . 4 (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell1QR‘𝐷) ⊆ (Pell14QR‘𝐷))
21sselda 3583 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1QR‘𝐷)) → 𝐴 ∈ (Pell14QR‘𝐷))
3 pell1qrge1 36914 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1QR‘𝐷)) → 1 ≤ 𝐴)
42, 3jca 554 . 2 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1QR‘𝐷)) → (𝐴 ∈ (Pell14QR‘𝐷) ∧ 1 ≤ 𝐴))
5 1red 9999 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 1 ∈ ℝ)
6 pell14qrre 36901 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 𝐴 ∈ ℝ)
75, 6leloed 10124 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (1 ≤ 𝐴 ↔ (1 < 𝐴 ∨ 1 = 𝐴)))
85, 6ltnled 10128 . . . . . . . . . 10 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (1 < 𝐴 ↔ ¬ 𝐴 ≤ 1))
98biimpa 501 . . . . . . . . 9 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 1 < 𝐴) → ¬ 𝐴 ≤ 1)
10 1div1e1 10661 . . . . . . . . . . . . 13 (1 / 1) = 1
1110eqcomi 2630 . . . . . . . . . . . 12 1 = (1 / 1)
1211a1i 11 . . . . . . . . . . 11 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 1 < 𝐴) → 1 = (1 / 1))
1312breq2d 4625 . . . . . . . . . 10 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 1 < 𝐴) → (𝐴 ≤ 1 ↔ 𝐴 ≤ (1 / 1)))
146adantr 481 . . . . . . . . . . 11 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 1 < 𝐴) → 𝐴 ∈ ℝ)
15 pell14qrgt0 36903 . . . . . . . . . . . 12 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 0 < 𝐴)
1615adantr 481 . . . . . . . . . . 11 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 1 < 𝐴) → 0 < 𝐴)
17 1red 9999 . . . . . . . . . . 11 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 1 < 𝐴) → 1 ∈ ℝ)
18 0lt1 10494 . . . . . . . . . . . 12 0 < 1
1918a1i 11 . . . . . . . . . . 11 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 1 < 𝐴) → 0 < 1)
20 lerec2 10855 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 ∈ ℝ ∧ 0 < 1)) → (𝐴 ≤ (1 / 1) ↔ 1 ≤ (1 / 𝐴)))
2114, 16, 17, 19, 20syl22anc 1324 . . . . . . . . . 10 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 1 < 𝐴) → (𝐴 ≤ (1 / 1) ↔ 1 ≤ (1 / 𝐴)))
2213, 21bitrd 268 . . . . . . . . 9 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 1 < 𝐴) → (𝐴 ≤ 1 ↔ 1 ≤ (1 / 𝐴)))
239, 22mtbid 314 . . . . . . . 8 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 1 < 𝐴) → ¬ 1 ≤ (1 / 𝐴))
24 simplll 797 . . . . . . . . 9 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 1 < 𝐴) ∧ (1 / 𝐴) ∈ (Pell1QR‘𝐷)) → 𝐷 ∈ (ℕ ∖ ◻NN))
25 pell1qrge1 36914 . . . . . . . . 9 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (1 / 𝐴) ∈ (Pell1QR‘𝐷)) → 1 ≤ (1 / 𝐴))
2624, 25sylancom 700 . . . . . . . 8 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 1 < 𝐴) ∧ (1 / 𝐴) ∈ (Pell1QR‘𝐷)) → 1 ≤ (1 / 𝐴))
2723, 26mtand 690 . . . . . . 7 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 1 < 𝐴) → ¬ (1 / 𝐴) ∈ (Pell1QR‘𝐷))
28 pell14qrdich 36913 . . . . . . . 8 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴 ∈ (Pell1QR‘𝐷) ∨ (1 / 𝐴) ∈ (Pell1QR‘𝐷)))
2928adantr 481 . . . . . . 7 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 1 < 𝐴) → (𝐴 ∈ (Pell1QR‘𝐷) ∨ (1 / 𝐴) ∈ (Pell1QR‘𝐷)))
30 orel2 398 . . . . . . 7 (¬ (1 / 𝐴) ∈ (Pell1QR‘𝐷) → ((𝐴 ∈ (Pell1QR‘𝐷) ∨ (1 / 𝐴) ∈ (Pell1QR‘𝐷)) → 𝐴 ∈ (Pell1QR‘𝐷)))
3127, 29, 30sylc 65 . . . . . 6 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 1 < 𝐴) → 𝐴 ∈ (Pell1QR‘𝐷))
32 simpr 477 . . . . . . 7 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 1 = 𝐴) → 1 = 𝐴)
33 pell1qr1 36915 . . . . . . . 8 (𝐷 ∈ (ℕ ∖ ◻NN) → 1 ∈ (Pell1QR‘𝐷))
3433ad2antrr 761 . . . . . . 7 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 1 = 𝐴) → 1 ∈ (Pell1QR‘𝐷))
3532, 34eqeltrrd 2699 . . . . . 6 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 1 = 𝐴) → 𝐴 ∈ (Pell1QR‘𝐷))
3631, 35jaodan 825 . . . . 5 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ (1 < 𝐴 ∨ 1 = 𝐴)) → 𝐴 ∈ (Pell1QR‘𝐷))
3736ex 450 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((1 < 𝐴 ∨ 1 = 𝐴) → 𝐴 ∈ (Pell1QR‘𝐷)))
387, 37sylbid 230 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (1 ≤ 𝐴𝐴 ∈ (Pell1QR‘𝐷)))
3938impr 648 . 2 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝐴 ∈ (Pell14QR‘𝐷) ∧ 1 ≤ 𝐴)) → 𝐴 ∈ (Pell1QR‘𝐷))
404, 39impbida 876 1 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell1QR‘𝐷) ↔ (𝐴 ∈ (Pell14QR‘𝐷) ∧ 1 ≤ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1480  wcel 1987  cdif 3552   class class class wbr 4613  cfv 5847  (class class class)co 6604  cr 9879  0cc0 9880  1c1 9881   < clt 10018  cle 10019   / cdiv 10628  cn 10964  NNcsquarenn 36880  Pell1QRcpell1qr 36881  Pell14QRcpell14qr 36883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-sup 8292  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-seq 12742  df-exp 12801  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-pell1qr 36886  df-pell14qr 36887  df-pell1234qr 36888
This theorem is referenced by:  pell14qrgap  36919  pellfundglb  36929
  Copyright terms: Public domain W3C validator