 Mathbox for Emmett Weisz < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpg Structured version   Visualization version   GIF version

Theorem elpg 41780
 Description: Membership in the class of partizan games. In ONAG this is stated as "If 𝐿 and 𝑅 are any two sets of games, then there is a game {𝐿 ∣ 𝑅}. All games are constructed in this way." The first sentence corresponds to the backward direction of our theorem, and the second to the forward direction. (Contributed by Emmett Weisz, 27-Aug-2021.)
Assertion
Ref Expression
elpg (𝐴 ∈ Pg ↔ (𝐴 ∈ (V × V) ∧ (1st𝐴) ⊆ Pg ∧ (2nd𝐴) ⊆ Pg))

Proof of Theorem elpg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elpglem1 41777 . . . 4 (∃𝑥(𝑥 ⊆ Pg ∧ ((1st𝐴) ∈ 𝒫 𝑥 ∧ (2nd𝐴) ∈ 𝒫 𝑥)) → ((1st𝐴) ⊆ Pg ∧ (2nd𝐴) ⊆ Pg))
2 elpglem2 41778 . . . 4 (((1st𝐴) ⊆ Pg ∧ (2nd𝐴) ⊆ Pg) → ∃𝑥(𝑥 ⊆ Pg ∧ ((1st𝐴) ∈ 𝒫 𝑥 ∧ (2nd𝐴) ∈ 𝒫 𝑥)))
31, 2impbii 199 . . 3 (∃𝑥(𝑥 ⊆ Pg ∧ ((1st𝐴) ∈ 𝒫 𝑥 ∧ (2nd𝐴) ∈ 𝒫 𝑥)) ↔ ((1st𝐴) ⊆ Pg ∧ (2nd𝐴) ⊆ Pg))
43anbi2i 729 . 2 ((𝐴 ∈ (V × V) ∧ ∃𝑥(𝑥 ⊆ Pg ∧ ((1st𝐴) ∈ 𝒫 𝑥 ∧ (2nd𝐴) ∈ 𝒫 𝑥))) ↔ (𝐴 ∈ (V × V) ∧ ((1st𝐴) ⊆ Pg ∧ (2nd𝐴) ⊆ Pg)))
5 df-pg 41776 . . . 4 Pg = setrecs((𝑦 ∈ V ↦ (𝒫 𝑦 × 𝒫 𝑦)))
65elsetrecs 41768 . . 3 (𝐴 ∈ Pg ↔ ∃𝑥(𝑥 ⊆ Pg ∧ 𝐴 ∈ ((𝑦 ∈ V ↦ (𝒫 𝑦 × 𝒫 𝑦))‘𝑥)))
7 elpglem3 41779 . . 3 (∃𝑥(𝑥 ⊆ Pg ∧ 𝐴 ∈ ((𝑦 ∈ V ↦ (𝒫 𝑦 × 𝒫 𝑦))‘𝑥)) ↔ (𝐴 ∈ (V × V) ∧ ∃𝑥(𝑥 ⊆ Pg ∧ ((1st𝐴) ∈ 𝒫 𝑥 ∧ (2nd𝐴) ∈ 𝒫 𝑥))))
86, 7bitri 264 . 2 (𝐴 ∈ Pg ↔ (𝐴 ∈ (V × V) ∧ ∃𝑥(𝑥 ⊆ Pg ∧ ((1st𝐴) ∈ 𝒫 𝑥 ∧ (2nd𝐴) ∈ 𝒫 𝑥))))
9 3anass 1040 . 2 ((𝐴 ∈ (V × V) ∧ (1st𝐴) ⊆ Pg ∧ (2nd𝐴) ⊆ Pg) ↔ (𝐴 ∈ (V × V) ∧ ((1st𝐴) ⊆ Pg ∧ (2nd𝐴) ⊆ Pg)))
104, 8, 93bitr4i 292 1 (𝐴 ∈ Pg ↔ (𝐴 ∈ (V × V) ∧ (1st𝐴) ⊆ Pg ∧ (2nd𝐴) ⊆ Pg))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 196   ∧ wa 384   ∧ w3a 1036  ∃wex 1701   ∈ wcel 1987  Vcvv 3190   ⊆ wss 3560  𝒫 cpw 4136   ↦ cmpt 4683   × cxp 5082  ‘cfv 5857  1st c1st 7126  2nd c2nd 7127  Pgcpg 41775 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-reg 8457  ax-inf2 8498 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rex 2914  df-reu 2915  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-iin 4495  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-r1 8587  df-rank 8588  df-setrecs 41754  df-pg 41776 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator