MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elplyr Structured version   Visualization version   GIF version

Theorem elplyr 24718
Description: Sufficient condition for elementhood in the set of polynomials. (Contributed by Mario Carneiro, 17-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Assertion
Ref Expression
elplyr ((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0𝐴:ℕ0𝑆) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))) ∈ (Poly‘𝑆))
Distinct variable groups:   𝑧,𝑘,𝐴   𝑘,𝑁,𝑧   𝑆,𝑘,𝑧

Proof of Theorem elplyr
Dummy variables 𝑎 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1128 . 2 ((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0𝐴:ℕ0𝑆) → 𝑆 ⊆ ℂ)
2 simp2 1129 . . 3 ((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0𝐴:ℕ0𝑆) → 𝑁 ∈ ℕ0)
3 simp3 1130 . . . . 5 ((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0𝐴:ℕ0𝑆) → 𝐴:ℕ0𝑆)
4 ssun1 4145 . . . . 5 𝑆 ⊆ (𝑆 ∪ {0})
5 fss 6520 . . . . 5 ((𝐴:ℕ0𝑆𝑆 ⊆ (𝑆 ∪ {0})) → 𝐴:ℕ0⟶(𝑆 ∪ {0}))
63, 4, 5sylancl 586 . . . 4 ((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0𝐴:ℕ0𝑆) → 𝐴:ℕ0⟶(𝑆 ∪ {0}))
7 0cnd 10622 . . . . . . . 8 ((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0𝐴:ℕ0𝑆) → 0 ∈ ℂ)
87snssd 4734 . . . . . . 7 ((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0𝐴:ℕ0𝑆) → {0} ⊆ ℂ)
91, 8unssd 4159 . . . . . 6 ((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0𝐴:ℕ0𝑆) → (𝑆 ∪ {0}) ⊆ ℂ)
10 cnex 10606 . . . . . 6 ℂ ∈ V
11 ssexg 5218 . . . . . 6 (((𝑆 ∪ {0}) ⊆ ℂ ∧ ℂ ∈ V) → (𝑆 ∪ {0}) ∈ V)
129, 10, 11sylancl 586 . . . . 5 ((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0𝐴:ℕ0𝑆) → (𝑆 ∪ {0}) ∈ V)
13 nn0ex 11891 . . . . 5 0 ∈ V
14 elmapg 8408 . . . . 5 (((𝑆 ∪ {0}) ∈ V ∧ ℕ0 ∈ V) → (𝐴 ∈ ((𝑆 ∪ {0}) ↑m0) ↔ 𝐴:ℕ0⟶(𝑆 ∪ {0})))
1512, 13, 14sylancl 586 . . . 4 ((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0𝐴:ℕ0𝑆) → (𝐴 ∈ ((𝑆 ∪ {0}) ↑m0) ↔ 𝐴:ℕ0⟶(𝑆 ∪ {0})))
166, 15mpbird 258 . . 3 ((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0𝐴:ℕ0𝑆) → 𝐴 ∈ ((𝑆 ∪ {0}) ↑m0))
17 eqidd 2819 . . 3 ((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0𝐴:ℕ0𝑆) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))
18 oveq2 7153 . . . . . . 7 (𝑛 = 𝑁 → (0...𝑛) = (0...𝑁))
1918sumeq1d 15046 . . . . . 6 (𝑛 = 𝑁 → Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...𝑁)((𝑎𝑘) · (𝑧𝑘)))
2019mpteq2dv 5153 . . . . 5 (𝑛 = 𝑁 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑎𝑘) · (𝑧𝑘))))
2120eqeq2d 2829 . . . 4 (𝑛 = 𝑁 → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) ↔ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑎𝑘) · (𝑧𝑘)))))
22 fveq1 6662 . . . . . . . 8 (𝑎 = 𝐴 → (𝑎𝑘) = (𝐴𝑘))
2322oveq1d 7160 . . . . . . 7 (𝑎 = 𝐴 → ((𝑎𝑘) · (𝑧𝑘)) = ((𝐴𝑘) · (𝑧𝑘)))
2423sumeq2sdv 15049 . . . . . 6 (𝑎 = 𝐴 → Σ𝑘 ∈ (0...𝑁)((𝑎𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘)))
2524mpteq2dv 5153 . . . . 5 (𝑎 = 𝐴 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑎𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))
2625eqeq2d 2829 . . . 4 (𝑎 = 𝐴 → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑎𝑘) · (𝑧𝑘))) ↔ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘)))))
2721, 26rspc2ev 3632 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ ((𝑆 ∪ {0}) ↑m0) ∧ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘)))) → ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)(𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))
282, 16, 17, 27syl3anc 1363 . 2 ((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0𝐴:ℕ0𝑆) → ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)(𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))
29 elply 24712 . 2 ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))) ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)(𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
301, 28, 29sylanbrc 583 1 ((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0𝐴:ℕ0𝑆) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))) ∈ (Poly‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  w3a 1079   = wceq 1528  wcel 2105  wrex 3136  Vcvv 3492  cun 3931  wss 3933  {csn 4557  cmpt 5137  wf 6344  cfv 6348  (class class class)co 7145  m cmap 8395  cc 10523  0cc0 10525   · cmul 10530  0cn0 11885  ...cfz 12880  cexp 13417  Σcsu 15030  Polycply 24701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-map 8397  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12881  df-seq 13358  df-sum 15031  df-ply 24705
This theorem is referenced by:  elplyd  24719  plypf1  24729  elaa2lem  42395
  Copyright terms: Public domain W3C validator