MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpr2elpr Structured version   Visualization version   GIF version

Theorem elpr2elpr 4801
Description: For an element 𝐴 of an unordered pair which is a subset of a given set 𝑉, there is another (maybe the same) element 𝑏 of the given set 𝑉 being an element of the unordered pair. (Contributed by AV, 5-Dec-2020.)
Assertion
Ref Expression
elpr2elpr ((𝑋𝑉𝑌𝑉𝐴 ∈ {𝑋, 𝑌}) → ∃𝑏𝑉 {𝑋, 𝑌} = {𝐴, 𝑏})
Distinct variable groups:   𝐴,𝑏   𝑉,𝑏   𝑋,𝑏   𝑌,𝑏

Proof of Theorem elpr2elpr
StepHypRef Expression
1 simprr 771 . . . . . 6 ((𝐴 = 𝑋 ∧ (𝑋𝑉𝑌𝑉)) → 𝑌𝑉)
2 preq2 4672 . . . . . . . 8 (𝑏 = 𝑌 → {𝐴, 𝑏} = {𝐴, 𝑌})
32eqeq2d 2834 . . . . . . 7 (𝑏 = 𝑌 → ({𝑋, 𝑌} = {𝐴, 𝑏} ↔ {𝑋, 𝑌} = {𝐴, 𝑌}))
43adantl 484 . . . . . 6 (((𝐴 = 𝑋 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑏 = 𝑌) → ({𝑋, 𝑌} = {𝐴, 𝑏} ↔ {𝑋, 𝑌} = {𝐴, 𝑌}))
5 preq1 4671 . . . . . . . 8 (𝑋 = 𝐴 → {𝑋, 𝑌} = {𝐴, 𝑌})
65eqcoms 2831 . . . . . . 7 (𝐴 = 𝑋 → {𝑋, 𝑌} = {𝐴, 𝑌})
76adantr 483 . . . . . 6 ((𝐴 = 𝑋 ∧ (𝑋𝑉𝑌𝑉)) → {𝑋, 𝑌} = {𝐴, 𝑌})
81, 4, 7rspcedvd 3628 . . . . 5 ((𝐴 = 𝑋 ∧ (𝑋𝑉𝑌𝑉)) → ∃𝑏𝑉 {𝑋, 𝑌} = {𝐴, 𝑏})
98ex 415 . . . 4 (𝐴 = 𝑋 → ((𝑋𝑉𝑌𝑉) → ∃𝑏𝑉 {𝑋, 𝑌} = {𝐴, 𝑏}))
10 simprl 769 . . . . . 6 ((𝐴 = 𝑌 ∧ (𝑋𝑉𝑌𝑉)) → 𝑋𝑉)
11 preq2 4672 . . . . . . . 8 (𝑏 = 𝑋 → {𝐴, 𝑏} = {𝐴, 𝑋})
1211eqeq2d 2834 . . . . . . 7 (𝑏 = 𝑋 → ({𝑋, 𝑌} = {𝐴, 𝑏} ↔ {𝑋, 𝑌} = {𝐴, 𝑋}))
1312adantl 484 . . . . . 6 (((𝐴 = 𝑌 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑏 = 𝑋) → ({𝑋, 𝑌} = {𝐴, 𝑏} ↔ {𝑋, 𝑌} = {𝐴, 𝑋}))
14 preq2 4672 . . . . . . . . 9 (𝑌 = 𝐴 → {𝑋, 𝑌} = {𝑋, 𝐴})
1514eqcoms 2831 . . . . . . . 8 (𝐴 = 𝑌 → {𝑋, 𝑌} = {𝑋, 𝐴})
16 prcom 4670 . . . . . . . 8 {𝑋, 𝐴} = {𝐴, 𝑋}
1715, 16syl6eq 2874 . . . . . . 7 (𝐴 = 𝑌 → {𝑋, 𝑌} = {𝐴, 𝑋})
1817adantr 483 . . . . . 6 ((𝐴 = 𝑌 ∧ (𝑋𝑉𝑌𝑉)) → {𝑋, 𝑌} = {𝐴, 𝑋})
1910, 13, 18rspcedvd 3628 . . . . 5 ((𝐴 = 𝑌 ∧ (𝑋𝑉𝑌𝑉)) → ∃𝑏𝑉 {𝑋, 𝑌} = {𝐴, 𝑏})
2019ex 415 . . . 4 (𝐴 = 𝑌 → ((𝑋𝑉𝑌𝑉) → ∃𝑏𝑉 {𝑋, 𝑌} = {𝐴, 𝑏}))
219, 20jaoi 853 . . 3 ((𝐴 = 𝑋𝐴 = 𝑌) → ((𝑋𝑉𝑌𝑉) → ∃𝑏𝑉 {𝑋, 𝑌} = {𝐴, 𝑏}))
22 elpri 4591 . . 3 (𝐴 ∈ {𝑋, 𝑌} → (𝐴 = 𝑋𝐴 = 𝑌))
2321, 22syl11 33 . 2 ((𝑋𝑉𝑌𝑉) → (𝐴 ∈ {𝑋, 𝑌} → ∃𝑏𝑉 {𝑋, 𝑌} = {𝐴, 𝑏}))
24233impia 1113 1 ((𝑋𝑉𝑌𝑉𝐴 ∈ {𝑋, 𝑌}) → ∃𝑏𝑉 {𝑋, 𝑌} = {𝐴, 𝑏})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114  wrex 3141  {cpr 4571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-v 3498  df-un 3943  df-sn 4570  df-pr 4572
This theorem is referenced by:  upgredg2vtx  26928
  Copyright terms: Public domain W3C validator