Mathbox for Alan Sare < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpwgded Structured version   Visualization version   GIF version

Theorem elpwgded 38262
 Description: elpwgdedVD 38636 in conventional notation. (Contributed by Alan Sare, 23-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
elpwgded.1 (𝜑𝐴 ∈ V)
elpwgded.2 (𝜓𝐴𝐵)
Assertion
Ref Expression
elpwgded ((𝜑𝜓) → 𝐴 ∈ 𝒫 𝐵)

Proof of Theorem elpwgded
StepHypRef Expression
1 elpwgded.1 . 2 (𝜑𝐴 ∈ V)
2 elpwgded.2 . 2 (𝜓𝐴𝐵)
3 elpwg 4138 . . 3 (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))
43biimpar 502 . 2 ((𝐴 ∈ V ∧ 𝐴𝐵) → 𝐴 ∈ 𝒫 𝐵)
51, 2, 4syl2an 494 1 ((𝜑𝜓) → 𝐴 ∈ 𝒫 𝐵)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   ∈ wcel 1987  Vcvv 3186   ⊆ wss 3555  𝒫 cpw 4130 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-v 3188  df-in 3562  df-ss 3569  df-pw 4132 This theorem is referenced by:  sspwimp  38637  sspwimpALT  38644
 Copyright terms: Public domain W3C validator