![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elqaalem1 | Structured version Visualization version GIF version |
Description: Lemma for elqaa 24122. The function 𝑁 represents the denominators of the rational coefficients 𝐵. By multiplying them all together to make 𝑅, we get a number big enough to clear all the denominators and make 𝑅 · 𝐹 an integer polynomial. (Contributed by Mario Carneiro, 23-Jul-2014.) (Revised by AV, 3-Oct-2020.) |
Ref | Expression |
---|---|
elqaa.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
elqaa.2 | ⊢ (𝜑 → 𝐹 ∈ ((Poly‘ℚ) ∖ {0𝑝})) |
elqaa.3 | ⊢ (𝜑 → (𝐹‘𝐴) = 0) |
elqaa.4 | ⊢ 𝐵 = (coeff‘𝐹) |
elqaa.5 | ⊢ 𝑁 = (𝑘 ∈ ℕ0 ↦ inf({𝑛 ∈ ℕ ∣ ((𝐵‘𝑘) · 𝑛) ∈ ℤ}, ℝ, < )) |
elqaa.6 | ⊢ 𝑅 = (seq0( · , 𝑁)‘(deg‘𝐹)) |
Ref | Expression |
---|---|
elqaalem1 | ⊢ ((𝜑 ∧ 𝐾 ∈ ℕ0) → ((𝑁‘𝐾) ∈ ℕ ∧ ((𝐵‘𝐾) · (𝑁‘𝐾)) ∈ ℤ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6229 | . . . . . . . . 9 ⊢ (𝑘 = 𝐾 → (𝐵‘𝑘) = (𝐵‘𝐾)) | |
2 | 1 | oveq1d 6705 | . . . . . . . 8 ⊢ (𝑘 = 𝐾 → ((𝐵‘𝑘) · 𝑛) = ((𝐵‘𝐾) · 𝑛)) |
3 | 2 | eleq1d 2715 | . . . . . . 7 ⊢ (𝑘 = 𝐾 → (((𝐵‘𝑘) · 𝑛) ∈ ℤ ↔ ((𝐵‘𝐾) · 𝑛) ∈ ℤ)) |
4 | 3 | rabbidv 3220 | . . . . . 6 ⊢ (𝑘 = 𝐾 → {𝑛 ∈ ℕ ∣ ((𝐵‘𝑘) · 𝑛) ∈ ℤ} = {𝑛 ∈ ℕ ∣ ((𝐵‘𝐾) · 𝑛) ∈ ℤ}) |
5 | 4 | infeq1d 8424 | . . . . 5 ⊢ (𝑘 = 𝐾 → inf({𝑛 ∈ ℕ ∣ ((𝐵‘𝑘) · 𝑛) ∈ ℤ}, ℝ, < ) = inf({𝑛 ∈ ℕ ∣ ((𝐵‘𝐾) · 𝑛) ∈ ℤ}, ℝ, < )) |
6 | elqaa.5 | . . . . 5 ⊢ 𝑁 = (𝑘 ∈ ℕ0 ↦ inf({𝑛 ∈ ℕ ∣ ((𝐵‘𝑘) · 𝑛) ∈ ℤ}, ℝ, < )) | |
7 | ltso 10156 | . . . . . 6 ⊢ < Or ℝ | |
8 | 7 | infex 8440 | . . . . 5 ⊢ inf({𝑛 ∈ ℕ ∣ ((𝐵‘𝐾) · 𝑛) ∈ ℤ}, ℝ, < ) ∈ V |
9 | 5, 6, 8 | fvmpt 6321 | . . . 4 ⊢ (𝐾 ∈ ℕ0 → (𝑁‘𝐾) = inf({𝑛 ∈ ℕ ∣ ((𝐵‘𝐾) · 𝑛) ∈ ℤ}, ℝ, < )) |
10 | 9 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝐾 ∈ ℕ0) → (𝑁‘𝐾) = inf({𝑛 ∈ ℕ ∣ ((𝐵‘𝐾) · 𝑛) ∈ ℤ}, ℝ, < )) |
11 | ssrab2 3720 | . . . . 5 ⊢ {𝑛 ∈ ℕ ∣ ((𝐵‘𝐾) · 𝑛) ∈ ℤ} ⊆ ℕ | |
12 | nnuz 11761 | . . . . 5 ⊢ ℕ = (ℤ≥‘1) | |
13 | 11, 12 | sseqtri 3670 | . . . 4 ⊢ {𝑛 ∈ ℕ ∣ ((𝐵‘𝐾) · 𝑛) ∈ ℤ} ⊆ (ℤ≥‘1) |
14 | elqaa.2 | . . . . . . . . 9 ⊢ (𝜑 → 𝐹 ∈ ((Poly‘ℚ) ∖ {0𝑝})) | |
15 | 14 | eldifad 3619 | . . . . . . . 8 ⊢ (𝜑 → 𝐹 ∈ (Poly‘ℚ)) |
16 | 0z 11426 | . . . . . . . . 9 ⊢ 0 ∈ ℤ | |
17 | zq 11832 | . . . . . . . . 9 ⊢ (0 ∈ ℤ → 0 ∈ ℚ) | |
18 | 16, 17 | ax-mp 5 | . . . . . . . 8 ⊢ 0 ∈ ℚ |
19 | elqaa.4 | . . . . . . . . 9 ⊢ 𝐵 = (coeff‘𝐹) | |
20 | 19 | coef2 24032 | . . . . . . . 8 ⊢ ((𝐹 ∈ (Poly‘ℚ) ∧ 0 ∈ ℚ) → 𝐵:ℕ0⟶ℚ) |
21 | 15, 18, 20 | sylancl 695 | . . . . . . 7 ⊢ (𝜑 → 𝐵:ℕ0⟶ℚ) |
22 | 21 | ffvelrnda 6399 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐾 ∈ ℕ0) → (𝐵‘𝐾) ∈ ℚ) |
23 | qmulz 11829 | . . . . . 6 ⊢ ((𝐵‘𝐾) ∈ ℚ → ∃𝑛 ∈ ℕ ((𝐵‘𝐾) · 𝑛) ∈ ℤ) | |
24 | 22, 23 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝐾 ∈ ℕ0) → ∃𝑛 ∈ ℕ ((𝐵‘𝐾) · 𝑛) ∈ ℤ) |
25 | rabn0 3991 | . . . . 5 ⊢ ({𝑛 ∈ ℕ ∣ ((𝐵‘𝐾) · 𝑛) ∈ ℤ} ≠ ∅ ↔ ∃𝑛 ∈ ℕ ((𝐵‘𝐾) · 𝑛) ∈ ℤ) | |
26 | 24, 25 | sylibr 224 | . . . 4 ⊢ ((𝜑 ∧ 𝐾 ∈ ℕ0) → {𝑛 ∈ ℕ ∣ ((𝐵‘𝐾) · 𝑛) ∈ ℤ} ≠ ∅) |
27 | infssuzcl 11810 | . . . 4 ⊢ (({𝑛 ∈ ℕ ∣ ((𝐵‘𝐾) · 𝑛) ∈ ℤ} ⊆ (ℤ≥‘1) ∧ {𝑛 ∈ ℕ ∣ ((𝐵‘𝐾) · 𝑛) ∈ ℤ} ≠ ∅) → inf({𝑛 ∈ ℕ ∣ ((𝐵‘𝐾) · 𝑛) ∈ ℤ}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ ((𝐵‘𝐾) · 𝑛) ∈ ℤ}) | |
28 | 13, 26, 27 | sylancr 696 | . . 3 ⊢ ((𝜑 ∧ 𝐾 ∈ ℕ0) → inf({𝑛 ∈ ℕ ∣ ((𝐵‘𝐾) · 𝑛) ∈ ℤ}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ ((𝐵‘𝐾) · 𝑛) ∈ ℤ}) |
29 | 10, 28 | eqeltrd 2730 | . 2 ⊢ ((𝜑 ∧ 𝐾 ∈ ℕ0) → (𝑁‘𝐾) ∈ {𝑛 ∈ ℕ ∣ ((𝐵‘𝐾) · 𝑛) ∈ ℤ}) |
30 | oveq2 6698 | . . . 4 ⊢ (𝑛 = (𝑁‘𝐾) → ((𝐵‘𝐾) · 𝑛) = ((𝐵‘𝐾) · (𝑁‘𝐾))) | |
31 | 30 | eleq1d 2715 | . . 3 ⊢ (𝑛 = (𝑁‘𝐾) → (((𝐵‘𝐾) · 𝑛) ∈ ℤ ↔ ((𝐵‘𝐾) · (𝑁‘𝐾)) ∈ ℤ)) |
32 | 31 | elrab 3396 | . 2 ⊢ ((𝑁‘𝐾) ∈ {𝑛 ∈ ℕ ∣ ((𝐵‘𝐾) · 𝑛) ∈ ℤ} ↔ ((𝑁‘𝐾) ∈ ℕ ∧ ((𝐵‘𝐾) · (𝑁‘𝐾)) ∈ ℤ)) |
33 | 29, 32 | sylib 208 | 1 ⊢ ((𝜑 ∧ 𝐾 ∈ ℕ0) → ((𝑁‘𝐾) ∈ ℕ ∧ ((𝐵‘𝐾) · (𝑁‘𝐾)) ∈ ℤ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ≠ wne 2823 ∃wrex 2942 {crab 2945 ∖ cdif 3604 ⊆ wss 3607 ∅c0 3948 {csn 4210 ↦ cmpt 4762 ⟶wf 5922 ‘cfv 5926 (class class class)co 6690 infcinf 8388 ℂcc 9972 ℝcr 9973 0cc0 9974 1c1 9975 · cmul 9979 < clt 10112 ℕcn 11058 ℕ0cn0 11330 ℤcz 11415 ℤ≥cuz 11725 ℚcq 11826 seqcseq 12841 0𝑝c0p 23481 Polycply 23985 coeffccoe 23987 degcdgr 23988 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-inf2 8576 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-pre-sup 10052 ax-addf 10053 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-fal 1529 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-se 5103 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-isom 5935 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-of 6939 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-er 7787 df-map 7901 df-pm 7902 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-sup 8389 df-inf 8390 df-oi 8456 df-card 8803 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-2 11117 df-3 11118 df-n0 11331 df-z 11416 df-uz 11726 df-q 11827 df-rp 11871 df-fz 12365 df-fzo 12505 df-fl 12633 df-seq 12842 df-exp 12901 df-hash 13158 df-cj 13883 df-re 13884 df-im 13885 df-sqrt 14019 df-abs 14020 df-clim 14263 df-rlim 14264 df-sum 14461 df-0p 23482 df-ply 23989 df-coe 23991 |
This theorem is referenced by: elqaalem2 24120 |
Copyright terms: Public domain | W3C validator |