MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elqaalem1 Structured version   Visualization version   GIF version

Theorem elqaalem1 23795
Description: Lemma for elqaa 23798. The function 𝑁 represents the denominators of the rational coefficients 𝐵. By multiplying them all together to make 𝑅, we get a number big enough to clear all the denominators and make 𝑅 · 𝐹 an integer polynomial. (Contributed by Mario Carneiro, 23-Jul-2014.) (Revised by AV, 3-Oct-2020.)
Hypotheses
Ref Expression
elqaa.1 (𝜑𝐴 ∈ ℂ)
elqaa.2 (𝜑𝐹 ∈ ((Poly‘ℚ) ∖ {0𝑝}))
elqaa.3 (𝜑 → (𝐹𝐴) = 0)
elqaa.4 𝐵 = (coeff‘𝐹)
elqaa.5 𝑁 = (𝑘 ∈ ℕ0 ↦ inf({𝑛 ∈ ℕ ∣ ((𝐵𝑘) · 𝑛) ∈ ℤ}, ℝ, < ))
elqaa.6 𝑅 = (seq0( · , 𝑁)‘(deg‘𝐹))
Assertion
Ref Expression
elqaalem1 ((𝜑𝐾 ∈ ℕ0) → ((𝑁𝐾) ∈ ℕ ∧ ((𝐵𝐾) · (𝑁𝐾)) ∈ ℤ))
Distinct variable groups:   𝑘,𝑛,𝐴   𝐵,𝑘,𝑛   𝜑,𝑘   𝑘,𝐾,𝑛   𝑘,𝑁,𝑛   𝑅,𝑘
Allowed substitution hints:   𝜑(𝑛)   𝑅(𝑛)   𝐹(𝑘,𝑛)

Proof of Theorem elqaalem1
StepHypRef Expression
1 fveq2 6088 . . . . . . . . 9 (𝑘 = 𝐾 → (𝐵𝑘) = (𝐵𝐾))
21oveq1d 6542 . . . . . . . 8 (𝑘 = 𝐾 → ((𝐵𝑘) · 𝑛) = ((𝐵𝐾) · 𝑛))
32eleq1d 2671 . . . . . . 7 (𝑘 = 𝐾 → (((𝐵𝑘) · 𝑛) ∈ ℤ ↔ ((𝐵𝐾) · 𝑛) ∈ ℤ))
43rabbidv 3163 . . . . . 6 (𝑘 = 𝐾 → {𝑛 ∈ ℕ ∣ ((𝐵𝑘) · 𝑛) ∈ ℤ} = {𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ})
54infeq1d 8243 . . . . 5 (𝑘 = 𝐾 → inf({𝑛 ∈ ℕ ∣ ((𝐵𝑘) · 𝑛) ∈ ℤ}, ℝ, < ) = inf({𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ}, ℝ, < ))
6 elqaa.5 . . . . 5 𝑁 = (𝑘 ∈ ℕ0 ↦ inf({𝑛 ∈ ℕ ∣ ((𝐵𝑘) · 𝑛) ∈ ℤ}, ℝ, < ))
7 ltso 9969 . . . . . 6 < Or ℝ
87infex 8259 . . . . 5 inf({𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ}, ℝ, < ) ∈ V
95, 6, 8fvmpt 6176 . . . 4 (𝐾 ∈ ℕ0 → (𝑁𝐾) = inf({𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ}, ℝ, < ))
109adantl 480 . . 3 ((𝜑𝐾 ∈ ℕ0) → (𝑁𝐾) = inf({𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ}, ℝ, < ))
11 ssrab2 3649 . . . . 5 {𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ} ⊆ ℕ
12 nnuz 11555 . . . . 5 ℕ = (ℤ‘1)
1311, 12sseqtri 3599 . . . 4 {𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ} ⊆ (ℤ‘1)
14 elqaa.2 . . . . . . . . 9 (𝜑𝐹 ∈ ((Poly‘ℚ) ∖ {0𝑝}))
1514eldifad 3551 . . . . . . . 8 (𝜑𝐹 ∈ (Poly‘ℚ))
16 0z 11221 . . . . . . . . 9 0 ∈ ℤ
17 zq 11626 . . . . . . . . 9 (0 ∈ ℤ → 0 ∈ ℚ)
1816, 17ax-mp 5 . . . . . . . 8 0 ∈ ℚ
19 elqaa.4 . . . . . . . . 9 𝐵 = (coeff‘𝐹)
2019coef2 23708 . . . . . . . 8 ((𝐹 ∈ (Poly‘ℚ) ∧ 0 ∈ ℚ) → 𝐵:ℕ0⟶ℚ)
2115, 18, 20sylancl 692 . . . . . . 7 (𝜑𝐵:ℕ0⟶ℚ)
2221ffvelrnda 6252 . . . . . 6 ((𝜑𝐾 ∈ ℕ0) → (𝐵𝐾) ∈ ℚ)
23 qmulz 11623 . . . . . 6 ((𝐵𝐾) ∈ ℚ → ∃𝑛 ∈ ℕ ((𝐵𝐾) · 𝑛) ∈ ℤ)
2422, 23syl 17 . . . . 5 ((𝜑𝐾 ∈ ℕ0) → ∃𝑛 ∈ ℕ ((𝐵𝐾) · 𝑛) ∈ ℤ)
25 rabn0 3911 . . . . 5 ({𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ} ≠ ∅ ↔ ∃𝑛 ∈ ℕ ((𝐵𝐾) · 𝑛) ∈ ℤ)
2624, 25sylibr 222 . . . 4 ((𝜑𝐾 ∈ ℕ0) → {𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ} ≠ ∅)
27 infssuzcl 11604 . . . 4 (({𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ} ⊆ (ℤ‘1) ∧ {𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ} ≠ ∅) → inf({𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ})
2813, 26, 27sylancr 693 . . 3 ((𝜑𝐾 ∈ ℕ0) → inf({𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ})
2910, 28eqeltrd 2687 . 2 ((𝜑𝐾 ∈ ℕ0) → (𝑁𝐾) ∈ {𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ})
30 oveq2 6535 . . . 4 (𝑛 = (𝑁𝐾) → ((𝐵𝐾) · 𝑛) = ((𝐵𝐾) · (𝑁𝐾)))
3130eleq1d 2671 . . 3 (𝑛 = (𝑁𝐾) → (((𝐵𝐾) · 𝑛) ∈ ℤ ↔ ((𝐵𝐾) · (𝑁𝐾)) ∈ ℤ))
3231elrab 3330 . 2 ((𝑁𝐾) ∈ {𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ} ↔ ((𝑁𝐾) ∈ ℕ ∧ ((𝐵𝐾) · (𝑁𝐾)) ∈ ℤ))
3329, 32sylib 206 1 ((𝜑𝐾 ∈ ℕ0) → ((𝑁𝐾) ∈ ℕ ∧ ((𝐵𝐾) · (𝑁𝐾)) ∈ ℤ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wcel 1976  wne 2779  wrex 2896  {crab 2899  cdif 3536  wss 3539  c0 3873  {csn 4124  cmpt 4637  wf 5786  cfv 5790  (class class class)co 6527  infcinf 8207  cc 9790  cr 9791  0cc0 9792  1c1 9793   · cmul 9797   < clt 9930  cn 10867  0cn0 11139  cz 11210  cuz 11519  cq 11620  seqcseq 12618  0𝑝c0p 23159  Polycply 23661  coeffccoe 23663  degcdgr 23664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-inf2 8398  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870  ax-addf 9871
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-of 6772  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-oadd 7428  df-er 7606  df-map 7723  df-pm 7724  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-sup 8208  df-inf 8209  df-oi 8275  df-card 8625  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10534  df-nn 10868  df-2 10926  df-3 10927  df-n0 11140  df-z 11211  df-uz 11520  df-q 11621  df-rp 11665  df-fz 12153  df-fzo 12290  df-fl 12410  df-seq 12619  df-exp 12678  df-hash 12935  df-cj 13633  df-re 13634  df-im 13635  df-sqrt 13769  df-abs 13770  df-clim 14013  df-rlim 14014  df-sum 14211  df-0p 23160  df-ply 23665  df-coe 23667
This theorem is referenced by:  elqaalem2  23796
  Copyright terms: Public domain W3C validator