MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elqtop Structured version   Visualization version   GIF version

Theorem elqtop 22233
Description: Value of the quotient topology function. (Contributed by Mario Carneiro, 23-Mar-2015.)
Hypothesis
Ref Expression
qtopval.1 𝑋 = 𝐽
Assertion
Ref Expression
elqtop ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → (𝐴 ∈ (𝐽 qTop 𝐹) ↔ (𝐴𝑌 ∧ (𝐹𝐴) ∈ 𝐽)))

Proof of Theorem elqtop
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 qtopval.1 . . . 4 𝑋 = 𝐽
21qtopval2 22232 . . 3 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → (𝐽 qTop 𝐹) = {𝑠 ∈ 𝒫 𝑌 ∣ (𝐹𝑠) ∈ 𝐽})
32eleq2d 2895 . 2 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → (𝐴 ∈ (𝐽 qTop 𝐹) ↔ 𝐴 ∈ {𝑠 ∈ 𝒫 𝑌 ∣ (𝐹𝑠) ∈ 𝐽}))
4 imaeq2 5918 . . . . 5 (𝑠 = 𝐴 → (𝐹𝑠) = (𝐹𝐴))
54eleq1d 2894 . . . 4 (𝑠 = 𝐴 → ((𝐹𝑠) ∈ 𝐽 ↔ (𝐹𝐴) ∈ 𝐽))
65elrab 3677 . . 3 (𝐴 ∈ {𝑠 ∈ 𝒫 𝑌 ∣ (𝐹𝑠) ∈ 𝐽} ↔ (𝐴 ∈ 𝒫 𝑌 ∧ (𝐹𝐴) ∈ 𝐽))
7 uniexg 7456 . . . . . . . . 9 (𝐽𝑉 𝐽 ∈ V)
81, 7eqeltrid 2914 . . . . . . . 8 (𝐽𝑉𝑋 ∈ V)
983ad2ant1 1125 . . . . . . 7 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → 𝑋 ∈ V)
10 simp3 1130 . . . . . . 7 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → 𝑍𝑋)
119, 10ssexd 5219 . . . . . 6 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → 𝑍 ∈ V)
12 simp2 1129 . . . . . 6 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → 𝐹:𝑍onto𝑌)
13 fornex 7646 . . . . . 6 (𝑍 ∈ V → (𝐹:𝑍onto𝑌𝑌 ∈ V))
1411, 12, 13sylc 65 . . . . 5 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → 𝑌 ∈ V)
15 elpw2g 5238 . . . . 5 (𝑌 ∈ V → (𝐴 ∈ 𝒫 𝑌𝐴𝑌))
1614, 15syl 17 . . . 4 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → (𝐴 ∈ 𝒫 𝑌𝐴𝑌))
1716anbi1d 629 . . 3 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → ((𝐴 ∈ 𝒫 𝑌 ∧ (𝐹𝐴) ∈ 𝐽) ↔ (𝐴𝑌 ∧ (𝐹𝐴) ∈ 𝐽)))
186, 17syl5bb 284 . 2 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → (𝐴 ∈ {𝑠 ∈ 𝒫 𝑌 ∣ (𝐹𝑠) ∈ 𝐽} ↔ (𝐴𝑌 ∧ (𝐹𝐴) ∈ 𝐽)))
193, 18bitrd 280 1 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → (𝐴 ∈ (𝐽 qTop 𝐹) ↔ (𝐴𝑌 ∧ (𝐹𝐴) ∈ 𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  {crab 3139  Vcvv 3492  wss 3933  𝒫 cpw 4535   cuni 4830  ccnv 5547  cima 5551  ontowfo 6346  (class class class)co 7145   qTop cqtop 16764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7148  df-oprab 7149  df-mpo 7150  df-qtop 16768
This theorem is referenced by:  qtoptop2  22235  elqtop2  22237  elqtop3  22239
  Copyright terms: Public domain W3C validator