Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrabsf Structured version   Visualization version   GIF version

Theorem elrabsf 3507
 Description: Membership in a restricted class abstraction, expressed with explicit class substitution. (The variation elrabf 3392 has implicit substitution). The hypothesis specifies that 𝑥 must not be a free variable in 𝐵. (Contributed by NM, 30-Sep-2003.) (Proof shortened by Mario Carneiro, 13-Oct-2016.)
Hypothesis
Ref Expression
elrabsf.1 𝑥𝐵
Assertion
Ref Expression
elrabsf (𝐴 ∈ {𝑥𝐵𝜑} ↔ (𝐴𝐵[𝐴 / 𝑥]𝜑))

Proof of Theorem elrabsf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfsbcq 3470 . 2 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
2 elrabsf.1 . . 3 𝑥𝐵
3 nfcv 2793 . . 3 𝑦𝐵
4 nfv 1883 . . 3 𝑦𝜑
5 nfsbc1v 3488 . . 3 𝑥[𝑦 / 𝑥]𝜑
6 sbceq1a 3479 . . 3 (𝑥 = 𝑦 → (𝜑[𝑦 / 𝑥]𝜑))
72, 3, 4, 5, 6cbvrab 3229 . 2 {𝑥𝐵𝜑} = {𝑦𝐵[𝑦 / 𝑥]𝜑}
81, 7elrab2 3399 1 (𝐴 ∈ {𝑥𝐵𝜑} ↔ (𝐴𝐵[𝐴 / 𝑥]𝜑))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 196   ∧ wa 383   ∈ wcel 2030  Ⅎwnfc 2780  {crab 2945  [wsbc 3468 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-rab 2950  df-v 3233  df-sbc 3469 This theorem is referenced by:  wfisg  5753  onminesb  7040  mpt2xopovel  7391  ac6num  9339  hashrabsn1  13201  bnj23  30912  bnj1204  31206  tfisg  31840  frpoinsg  31866  frinsg  31870  rabrenfdioph  37695
 Copyright terms: Public domain W3C validator