MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrabsf Structured version   Visualization version   GIF version

Theorem elrabsf 3437
Description: Membership in a restricted class abstraction, expressed with explicit class substitution. (The variation elrabf 3325 has implicit substitution). The hypothesis specifies that 𝑥 must not be a free variable in 𝐵. (Contributed by NM, 30-Sep-2003.) (Proof shortened by Mario Carneiro, 13-Oct-2016.)
Hypothesis
Ref Expression
elrabsf.1 𝑥𝐵
Assertion
Ref Expression
elrabsf (𝐴 ∈ {𝑥𝐵𝜑} ↔ (𝐴𝐵[𝐴 / 𝑥]𝜑))

Proof of Theorem elrabsf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfsbcq 3400 . 2 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
2 elrabsf.1 . . 3 𝑥𝐵
3 nfcv 2747 . . 3 𝑦𝐵
4 nfv 1829 . . 3 𝑦𝜑
5 nfsbc1v 3418 . . 3 𝑥[𝑦 / 𝑥]𝜑
6 sbceq1a 3409 . . 3 (𝑥 = 𝑦 → (𝜑[𝑦 / 𝑥]𝜑))
72, 3, 4, 5, 6cbvrab 3167 . 2 {𝑥𝐵𝜑} = {𝑦𝐵[𝑦 / 𝑥]𝜑}
81, 7elrab2 3329 1 (𝐴 ∈ {𝑥𝐵𝜑} ↔ (𝐴𝐵[𝐴 / 𝑥]𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 194  wa 382  wcel 1976  wnfc 2734  {crab 2896  [wsbc 3398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2229  ax-ext 2586
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-clab 2593  df-cleq 2599  df-clel 2602  df-nfc 2736  df-rab 2901  df-v 3171  df-sbc 3399
This theorem is referenced by:  wfisg  5615  onminesb  6864  mpt2xopovel  7207  ac6num  9158  hashrabsn1  12973  bnj23  29841  bnj1204  30137  tfisg  30763  frinsg  30789  rabrenfdioph  36196
  Copyright terms: Public domain W3C validator