MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrelimasn Structured version   Visualization version   GIF version

Theorem elrelimasn 5448
Description: Elementhood in the image of a singleton. (Contributed by Mario Carneiro, 3-Nov-2015.)
Assertion
Ref Expression
elrelimasn (Rel 𝑅 → (𝐵 ∈ (𝑅 “ {𝐴}) ↔ 𝐴𝑅𝐵))

Proof of Theorem elrelimasn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 relimasn 5447 . . 3 (Rel 𝑅 → (𝑅 “ {𝐴}) = {𝑥𝐴𝑅𝑥})
21eleq2d 2684 . 2 (Rel 𝑅 → (𝐵 ∈ (𝑅 “ {𝐴}) ↔ 𝐵 ∈ {𝑥𝐴𝑅𝑥}))
3 brrelex2 5117 . . . 4 ((Rel 𝑅𝐴𝑅𝐵) → 𝐵 ∈ V)
43ex 450 . . 3 (Rel 𝑅 → (𝐴𝑅𝐵𝐵 ∈ V))
5 breq2 4617 . . . 4 (𝑥 = 𝐵 → (𝐴𝑅𝑥𝐴𝑅𝐵))
65elab3g 3340 . . 3 ((𝐴𝑅𝐵𝐵 ∈ V) → (𝐵 ∈ {𝑥𝐴𝑅𝑥} ↔ 𝐴𝑅𝐵))
74, 6syl 17 . 2 (Rel 𝑅 → (𝐵 ∈ {𝑥𝐴𝑅𝑥} ↔ 𝐴𝑅𝐵))
82, 7bitrd 268 1 (Rel 𝑅 → (𝐵 ∈ (𝑅 “ {𝐴}) ↔ 𝐴𝑅𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wcel 1987  {cab 2607  Vcvv 3186  {csn 4148   class class class wbr 4613  cima 5077  Rel wrel 5079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pr 4867
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-sn 4149  df-pr 4151  df-op 4155  df-br 4614  df-opab 4674  df-xp 5080  df-rel 5081  df-cnv 5082  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087
This theorem is referenced by:  eliniseg2  5464  dprd2dlem2  18360  dprd2dlem1  18361  dprd2da  18362  dprd2d2  18364  dpjfval  18375  ustuqtop4  21958  utop2nei  21964  utop3cls  21965  ucncn  21999  cnambfre  33087  frege133d  37535  nzin  37996
  Copyright terms: Public domain W3C validator