Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrfirn2 Structured version   Visualization version   GIF version

Theorem elrfirn2 36736
Description: Elementhood in a set of relative finite intersections of an indexed family of sets (implicit). (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
elrfirn2 ((𝐵𝑉 ∧ ∀𝑦𝐼 𝐶𝐵) → (𝐴 ∈ (fi‘({𝐵} ∪ ran (𝑦𝐼𝐶))) ↔ ∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)𝐴 = (𝐵 𝑦𝑣 𝐶)))
Distinct variable groups:   𝑣,𝐴   𝑣,𝐵,𝑦   𝑣,𝐶   𝑣,𝐼,𝑦   𝑣,𝑉,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝐶(𝑦)

Proof of Theorem elrfirn2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elpw2g 4787 . . . . . . 7 (𝐵𝑉 → (𝐶 ∈ 𝒫 𝐵𝐶𝐵))
21biimprd 238 . . . . . 6 (𝐵𝑉 → (𝐶𝐵𝐶 ∈ 𝒫 𝐵))
32ralimdv 2957 . . . . 5 (𝐵𝑉 → (∀𝑦𝐼 𝐶𝐵 → ∀𝑦𝐼 𝐶 ∈ 𝒫 𝐵))
43imp 445 . . . 4 ((𝐵𝑉 ∧ ∀𝑦𝐼 𝐶𝐵) → ∀𝑦𝐼 𝐶 ∈ 𝒫 𝐵)
5 eqid 2621 . . . . 5 (𝑦𝐼𝐶) = (𝑦𝐼𝐶)
65fmpt 6337 . . . 4 (∀𝑦𝐼 𝐶 ∈ 𝒫 𝐵 ↔ (𝑦𝐼𝐶):𝐼⟶𝒫 𝐵)
74, 6sylib 208 . . 3 ((𝐵𝑉 ∧ ∀𝑦𝐼 𝐶𝐵) → (𝑦𝐼𝐶):𝐼⟶𝒫 𝐵)
8 elrfirn 36735 . . 3 ((𝐵𝑉 ∧ (𝑦𝐼𝐶):𝐼⟶𝒫 𝐵) → (𝐴 ∈ (fi‘({𝐵} ∪ ran (𝑦𝐼𝐶))) ↔ ∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)𝐴 = (𝐵 𝑧𝑣 ((𝑦𝐼𝐶)‘𝑧))))
97, 8syldan 487 . 2 ((𝐵𝑉 ∧ ∀𝑦𝐼 𝐶𝐵) → (𝐴 ∈ (fi‘({𝐵} ∪ ran (𝑦𝐼𝐶))) ↔ ∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)𝐴 = (𝐵 𝑧𝑣 ((𝑦𝐼𝐶)‘𝑧))))
10 inss1 3811 . . . . . 6 (𝒫 𝐼 ∩ Fin) ⊆ 𝒫 𝐼
1110sseli 3579 . . . . 5 (𝑣 ∈ (𝒫 𝐼 ∩ Fin) → 𝑣 ∈ 𝒫 𝐼)
1211elpwid 4141 . . . 4 (𝑣 ∈ (𝒫 𝐼 ∩ Fin) → 𝑣𝐼)
13 nffvmpt1 6156 . . . . . . . 8 𝑦((𝑦𝐼𝐶)‘𝑧)
14 nfcv 2761 . . . . . . . 8 𝑧((𝑦𝐼𝐶)‘𝑦)
15 fveq2 6148 . . . . . . . 8 (𝑧 = 𝑦 → ((𝑦𝐼𝐶)‘𝑧) = ((𝑦𝐼𝐶)‘𝑦))
1613, 14, 15cbviin 4524 . . . . . . 7 𝑧𝑣 ((𝑦𝐼𝐶)‘𝑧) = 𝑦𝑣 ((𝑦𝐼𝐶)‘𝑦)
17 simplr 791 . . . . . . . . . . . . 13 (((𝐵𝑉𝑦𝐼) ∧ 𝐶𝐵) → 𝑦𝐼)
18 simpll 789 . . . . . . . . . . . . . 14 (((𝐵𝑉𝑦𝐼) ∧ 𝐶𝐵) → 𝐵𝑉)
19 simpr 477 . . . . . . . . . . . . . 14 (((𝐵𝑉𝑦𝐼) ∧ 𝐶𝐵) → 𝐶𝐵)
2018, 19ssexd 4765 . . . . . . . . . . . . 13 (((𝐵𝑉𝑦𝐼) ∧ 𝐶𝐵) → 𝐶 ∈ V)
215fvmpt2 6248 . . . . . . . . . . . . 13 ((𝑦𝐼𝐶 ∈ V) → ((𝑦𝐼𝐶)‘𝑦) = 𝐶)
2217, 20, 21syl2anc 692 . . . . . . . . . . . 12 (((𝐵𝑉𝑦𝐼) ∧ 𝐶𝐵) → ((𝑦𝐼𝐶)‘𝑦) = 𝐶)
2322ex 450 . . . . . . . . . . 11 ((𝐵𝑉𝑦𝐼) → (𝐶𝐵 → ((𝑦𝐼𝐶)‘𝑦) = 𝐶))
2423ralimdva 2956 . . . . . . . . . 10 (𝐵𝑉 → (∀𝑦𝐼 𝐶𝐵 → ∀𝑦𝐼 ((𝑦𝐼𝐶)‘𝑦) = 𝐶))
2524imp 445 . . . . . . . . 9 ((𝐵𝑉 ∧ ∀𝑦𝐼 𝐶𝐵) → ∀𝑦𝐼 ((𝑦𝐼𝐶)‘𝑦) = 𝐶)
26 ssralv 3645 . . . . . . . . 9 (𝑣𝐼 → (∀𝑦𝐼 ((𝑦𝐼𝐶)‘𝑦) = 𝐶 → ∀𝑦𝑣 ((𝑦𝐼𝐶)‘𝑦) = 𝐶))
2725, 26mpan9 486 . . . . . . . 8 (((𝐵𝑉 ∧ ∀𝑦𝐼 𝐶𝐵) ∧ 𝑣𝐼) → ∀𝑦𝑣 ((𝑦𝐼𝐶)‘𝑦) = 𝐶)
28 iineq2 4504 . . . . . . . 8 (∀𝑦𝑣 ((𝑦𝐼𝐶)‘𝑦) = 𝐶 𝑦𝑣 ((𝑦𝐼𝐶)‘𝑦) = 𝑦𝑣 𝐶)
2927, 28syl 17 . . . . . . 7 (((𝐵𝑉 ∧ ∀𝑦𝐼 𝐶𝐵) ∧ 𝑣𝐼) → 𝑦𝑣 ((𝑦𝐼𝐶)‘𝑦) = 𝑦𝑣 𝐶)
3016, 29syl5eq 2667 . . . . . 6 (((𝐵𝑉 ∧ ∀𝑦𝐼 𝐶𝐵) ∧ 𝑣𝐼) → 𝑧𝑣 ((𝑦𝐼𝐶)‘𝑧) = 𝑦𝑣 𝐶)
3130ineq2d 3792 . . . . 5 (((𝐵𝑉 ∧ ∀𝑦𝐼 𝐶𝐵) ∧ 𝑣𝐼) → (𝐵 𝑧𝑣 ((𝑦𝐼𝐶)‘𝑧)) = (𝐵 𝑦𝑣 𝐶))
3231eqeq2d 2631 . . . 4 (((𝐵𝑉 ∧ ∀𝑦𝐼 𝐶𝐵) ∧ 𝑣𝐼) → (𝐴 = (𝐵 𝑧𝑣 ((𝑦𝐼𝐶)‘𝑧)) ↔ 𝐴 = (𝐵 𝑦𝑣 𝐶)))
3312, 32sylan2 491 . . 3 (((𝐵𝑉 ∧ ∀𝑦𝐼 𝐶𝐵) ∧ 𝑣 ∈ (𝒫 𝐼 ∩ Fin)) → (𝐴 = (𝐵 𝑧𝑣 ((𝑦𝐼𝐶)‘𝑧)) ↔ 𝐴 = (𝐵 𝑦𝑣 𝐶)))
3433rexbidva 3042 . 2 ((𝐵𝑉 ∧ ∀𝑦𝐼 𝐶𝐵) → (∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)𝐴 = (𝐵 𝑧𝑣 ((𝑦𝐼𝐶)‘𝑧)) ↔ ∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)𝐴 = (𝐵 𝑦𝑣 𝐶)))
359, 34bitrd 268 1 ((𝐵𝑉 ∧ ∀𝑦𝐼 𝐶𝐵) → (𝐴 ∈ (fi‘({𝐵} ∪ ran (𝑦𝐼𝐶))) ↔ ∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)𝐴 = (𝐵 𝑦𝑣 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wral 2907  wrex 2908  Vcvv 3186  cun 3553  cin 3554  wss 3555  𝒫 cpw 4130  {csn 4148   ciin 4486  cmpt 4673  ran crn 5075  wf 5843  cfv 5847  Fincfn 7899  ficfi 8260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-en 7900  df-dom 7901  df-fin 7903  df-fi 8261
This theorem is referenced by:  cmpfiiin  36737
  Copyright terms: Public domain W3C validator