Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrfirn2 Structured version   Visualization version   GIF version

Theorem elrfirn2 37759
Description: Elementhood in a set of relative finite intersections of an indexed family of sets (implicit). (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
elrfirn2 ((𝐵𝑉 ∧ ∀𝑦𝐼 𝐶𝐵) → (𝐴 ∈ (fi‘({𝐵} ∪ ran (𝑦𝐼𝐶))) ↔ ∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)𝐴 = (𝐵 𝑦𝑣 𝐶)))
Distinct variable groups:   𝑣,𝐴   𝑣,𝐵,𝑦   𝑣,𝐶   𝑣,𝐼,𝑦   𝑣,𝑉,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝐶(𝑦)

Proof of Theorem elrfirn2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elpw2g 4974 . . . . . . 7 (𝐵𝑉 → (𝐶 ∈ 𝒫 𝐵𝐶𝐵))
21biimprd 238 . . . . . 6 (𝐵𝑉 → (𝐶𝐵𝐶 ∈ 𝒫 𝐵))
32ralimdv 3099 . . . . 5 (𝐵𝑉 → (∀𝑦𝐼 𝐶𝐵 → ∀𝑦𝐼 𝐶 ∈ 𝒫 𝐵))
43imp 444 . . . 4 ((𝐵𝑉 ∧ ∀𝑦𝐼 𝐶𝐵) → ∀𝑦𝐼 𝐶 ∈ 𝒫 𝐵)
5 eqid 2758 . . . . 5 (𝑦𝐼𝐶) = (𝑦𝐼𝐶)
65fmpt 6542 . . . 4 (∀𝑦𝐼 𝐶 ∈ 𝒫 𝐵 ↔ (𝑦𝐼𝐶):𝐼⟶𝒫 𝐵)
74, 6sylib 208 . . 3 ((𝐵𝑉 ∧ ∀𝑦𝐼 𝐶𝐵) → (𝑦𝐼𝐶):𝐼⟶𝒫 𝐵)
8 elrfirn 37758 . . 3 ((𝐵𝑉 ∧ (𝑦𝐼𝐶):𝐼⟶𝒫 𝐵) → (𝐴 ∈ (fi‘({𝐵} ∪ ran (𝑦𝐼𝐶))) ↔ ∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)𝐴 = (𝐵 𝑧𝑣 ((𝑦𝐼𝐶)‘𝑧))))
97, 8syldan 488 . 2 ((𝐵𝑉 ∧ ∀𝑦𝐼 𝐶𝐵) → (𝐴 ∈ (fi‘({𝐵} ∪ ran (𝑦𝐼𝐶))) ↔ ∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)𝐴 = (𝐵 𝑧𝑣 ((𝑦𝐼𝐶)‘𝑧))))
10 inss1 3974 . . . . . 6 (𝒫 𝐼 ∩ Fin) ⊆ 𝒫 𝐼
1110sseli 3738 . . . . 5 (𝑣 ∈ (𝒫 𝐼 ∩ Fin) → 𝑣 ∈ 𝒫 𝐼)
1211elpwid 4312 . . . 4 (𝑣 ∈ (𝒫 𝐼 ∩ Fin) → 𝑣𝐼)
13 nffvmpt1 6358 . . . . . . . 8 𝑦((𝑦𝐼𝐶)‘𝑧)
14 nfcv 2900 . . . . . . . 8 𝑧((𝑦𝐼𝐶)‘𝑦)
15 fveq2 6350 . . . . . . . 8 (𝑧 = 𝑦 → ((𝑦𝐼𝐶)‘𝑧) = ((𝑦𝐼𝐶)‘𝑦))
1613, 14, 15cbviin 4708 . . . . . . 7 𝑧𝑣 ((𝑦𝐼𝐶)‘𝑧) = 𝑦𝑣 ((𝑦𝐼𝐶)‘𝑦)
17 simplr 809 . . . . . . . . . . . . 13 (((𝐵𝑉𝑦𝐼) ∧ 𝐶𝐵) → 𝑦𝐼)
18 simpll 807 . . . . . . . . . . . . . 14 (((𝐵𝑉𝑦𝐼) ∧ 𝐶𝐵) → 𝐵𝑉)
19 simpr 479 . . . . . . . . . . . . . 14 (((𝐵𝑉𝑦𝐼) ∧ 𝐶𝐵) → 𝐶𝐵)
2018, 19ssexd 4955 . . . . . . . . . . . . 13 (((𝐵𝑉𝑦𝐼) ∧ 𝐶𝐵) → 𝐶 ∈ V)
215fvmpt2 6451 . . . . . . . . . . . . 13 ((𝑦𝐼𝐶 ∈ V) → ((𝑦𝐼𝐶)‘𝑦) = 𝐶)
2217, 20, 21syl2anc 696 . . . . . . . . . . . 12 (((𝐵𝑉𝑦𝐼) ∧ 𝐶𝐵) → ((𝑦𝐼𝐶)‘𝑦) = 𝐶)
2322ex 449 . . . . . . . . . . 11 ((𝐵𝑉𝑦𝐼) → (𝐶𝐵 → ((𝑦𝐼𝐶)‘𝑦) = 𝐶))
2423ralimdva 3098 . . . . . . . . . 10 (𝐵𝑉 → (∀𝑦𝐼 𝐶𝐵 → ∀𝑦𝐼 ((𝑦𝐼𝐶)‘𝑦) = 𝐶))
2524imp 444 . . . . . . . . 9 ((𝐵𝑉 ∧ ∀𝑦𝐼 𝐶𝐵) → ∀𝑦𝐼 ((𝑦𝐼𝐶)‘𝑦) = 𝐶)
26 ssralv 3805 . . . . . . . . 9 (𝑣𝐼 → (∀𝑦𝐼 ((𝑦𝐼𝐶)‘𝑦) = 𝐶 → ∀𝑦𝑣 ((𝑦𝐼𝐶)‘𝑦) = 𝐶))
2725, 26mpan9 487 . . . . . . . 8 (((𝐵𝑉 ∧ ∀𝑦𝐼 𝐶𝐵) ∧ 𝑣𝐼) → ∀𝑦𝑣 ((𝑦𝐼𝐶)‘𝑦) = 𝐶)
28 iineq2 4688 . . . . . . . 8 (∀𝑦𝑣 ((𝑦𝐼𝐶)‘𝑦) = 𝐶 𝑦𝑣 ((𝑦𝐼𝐶)‘𝑦) = 𝑦𝑣 𝐶)
2927, 28syl 17 . . . . . . 7 (((𝐵𝑉 ∧ ∀𝑦𝐼 𝐶𝐵) ∧ 𝑣𝐼) → 𝑦𝑣 ((𝑦𝐼𝐶)‘𝑦) = 𝑦𝑣 𝐶)
3016, 29syl5eq 2804 . . . . . 6 (((𝐵𝑉 ∧ ∀𝑦𝐼 𝐶𝐵) ∧ 𝑣𝐼) → 𝑧𝑣 ((𝑦𝐼𝐶)‘𝑧) = 𝑦𝑣 𝐶)
3130ineq2d 3955 . . . . 5 (((𝐵𝑉 ∧ ∀𝑦𝐼 𝐶𝐵) ∧ 𝑣𝐼) → (𝐵 𝑧𝑣 ((𝑦𝐼𝐶)‘𝑧)) = (𝐵 𝑦𝑣 𝐶))
3231eqeq2d 2768 . . . 4 (((𝐵𝑉 ∧ ∀𝑦𝐼 𝐶𝐵) ∧ 𝑣𝐼) → (𝐴 = (𝐵 𝑧𝑣 ((𝑦𝐼𝐶)‘𝑧)) ↔ 𝐴 = (𝐵 𝑦𝑣 𝐶)))
3312, 32sylan2 492 . . 3 (((𝐵𝑉 ∧ ∀𝑦𝐼 𝐶𝐵) ∧ 𝑣 ∈ (𝒫 𝐼 ∩ Fin)) → (𝐴 = (𝐵 𝑧𝑣 ((𝑦𝐼𝐶)‘𝑧)) ↔ 𝐴 = (𝐵 𝑦𝑣 𝐶)))
3433rexbidva 3185 . 2 ((𝐵𝑉 ∧ ∀𝑦𝐼 𝐶𝐵) → (∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)𝐴 = (𝐵 𝑧𝑣 ((𝑦𝐼𝐶)‘𝑧)) ↔ ∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)𝐴 = (𝐵 𝑦𝑣 𝐶)))
359, 34bitrd 268 1 ((𝐵𝑉 ∧ ∀𝑦𝐼 𝐶𝐵) → (𝐴 ∈ (fi‘({𝐵} ∪ ran (𝑦𝐼𝐶))) ↔ ∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)𝐴 = (𝐵 𝑦𝑣 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1630  wcel 2137  wral 3048  wrex 3049  Vcvv 3338  cun 3711  cin 3712  wss 3713  𝒫 cpw 4300  {csn 4319   ciin 4671  cmpt 4879  ran crn 5265  wf 6043  cfv 6047  Fincfn 8119  ficfi 8479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1986  ax-6 2052  ax-7 2088  ax-8 2139  ax-9 2146  ax-10 2166  ax-11 2181  ax-12 2194  ax-13 2389  ax-ext 2738  ax-sep 4931  ax-nul 4939  ax-pow 4990  ax-pr 5053  ax-un 7112
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2045  df-eu 2609  df-mo 2610  df-clab 2745  df-cleq 2751  df-clel 2754  df-nfc 2889  df-ne 2931  df-ral 3053  df-rex 3054  df-reu 3055  df-rab 3057  df-v 3340  df-sbc 3575  df-csb 3673  df-dif 3716  df-un 3718  df-in 3720  df-ss 3727  df-pss 3729  df-nul 4057  df-if 4229  df-pw 4302  df-sn 4320  df-pr 4322  df-tp 4324  df-op 4326  df-uni 4587  df-int 4626  df-iun 4672  df-iin 4673  df-br 4803  df-opab 4863  df-mpt 4880  df-tr 4903  df-id 5172  df-eprel 5177  df-po 5185  df-so 5186  df-fr 5223  df-we 5225  df-xp 5270  df-rel 5271  df-cnv 5272  df-co 5273  df-dm 5274  df-rn 5275  df-res 5276  df-ima 5277  df-pred 5839  df-ord 5885  df-on 5886  df-lim 5887  df-suc 5888  df-iota 6010  df-fun 6049  df-fn 6050  df-f 6051  df-f1 6052  df-fo 6053  df-f1o 6054  df-fv 6055  df-ov 6814  df-oprab 6815  df-mpt2 6816  df-om 7229  df-wrecs 7574  df-recs 7635  df-rdg 7673  df-1o 7727  df-oadd 7731  df-er 7909  df-en 8120  df-dom 8121  df-fin 8123  df-fi 8480
This theorem is referenced by:  cmpfiiin  37760
  Copyright terms: Public domain W3C validator