MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrint Structured version   Visualization version   GIF version

Theorem elrint 4670
Description: Membership in a restricted intersection. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
elrint (𝑋 ∈ (𝐴 𝐵) ↔ (𝑋𝐴 ∧ ∀𝑦𝐵 𝑋𝑦))
Distinct variable groups:   𝑦,𝐵   𝑦,𝑋
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem elrint
StepHypRef Expression
1 elin 3939 . 2 (𝑋 ∈ (𝐴 𝐵) ↔ (𝑋𝐴𝑋 𝐵))
2 elintg 4635 . . 3 (𝑋𝐴 → (𝑋 𝐵 ↔ ∀𝑦𝐵 𝑋𝑦))
32pm5.32i 672 . 2 ((𝑋𝐴𝑋 𝐵) ↔ (𝑋𝐴 ∧ ∀𝑦𝐵 𝑋𝑦))
41, 3bitri 264 1 (𝑋 ∈ (𝐴 𝐵) ↔ (𝑋𝐴 ∧ ∀𝑦𝐵 𝑋𝑦))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 383  wcel 2139  wral 3050  cin 3714   cint 4627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-v 3342  df-in 3722  df-int 4628
This theorem is referenced by:  elrint2  4671  ptcnplem  21626  tmdgsum2  22101  limciun  23857
  Copyright terms: Public domain W3C validator