MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrnmpt2g Structured version   Visualization version   GIF version

Theorem elrnmpt2g 6814
Description: Membership in the range of an operation class abstraction. (Contributed by NM, 27-Aug-2007.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
rngop.1 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
Assertion
Ref Expression
elrnmpt2g (𝐷𝑉 → (𝐷 ∈ ran 𝐹 ↔ ∃𝑥𝐴𝑦𝐵 𝐷 = 𝐶))
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦,𝐷
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem elrnmpt2g
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2655 . . 3 (𝑧 = 𝐷 → (𝑧 = 𝐶𝐷 = 𝐶))
212rexbidv 3086 . 2 (𝑧 = 𝐷 → (∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶 ↔ ∃𝑥𝐴𝑦𝐵 𝐷 = 𝐶))
3 rngop.1 . . 3 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
43rnmpt2 6812 . 2 ran 𝐹 = {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶}
52, 4elab2g 3385 1 (𝐷𝑉 → (𝐷 ∈ ran 𝐹 ↔ ∃𝑥𝐴𝑦𝐵 𝐷 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1523  wcel 2030  wrex 2942  ran crn 5144  cmpt2 6692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-br 4686  df-opab 4746  df-cnv 5151  df-dm 5153  df-rn 5154  df-oprab 6694  df-mpt2 6695
This theorem is referenced by:  ordtbas2  21043  txopn  21453  tgisline  25567  elsx  30385  smflimlem6  41305
  Copyright terms: Public domain W3C validator