![]() |
Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elsetrecslem | Structured version Visualization version GIF version |
Description: Lemma for elsetrecs 42771. Any element of setrecs(𝐹) is generated by some subset of setrecs(𝐹). This is much weaker than setrec2v 42768. To see why this lemma also requires setrec1 42763, consider what would happen if we replaced 𝐵 with {𝐴}. The antecedent would still hold, but the consequent would fail in general. Consider dispensing with the deduction form. (Contributed by Emmett Weisz, 11-Jul-2021.) (New usage is discouraged.) |
Ref | Expression |
---|---|
elsetrecs.1 | ⊢ 𝐵 = setrecs(𝐹) |
Ref | Expression |
---|---|
elsetrecslem | ⊢ (𝐴 ∈ 𝐵 → ∃𝑥(𝑥 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssdifsn 4351 | . . . . 5 ⊢ (𝐵 ⊆ (𝐵 ∖ {𝐴}) ↔ (𝐵 ⊆ 𝐵 ∧ ¬ 𝐴 ∈ 𝐵)) | |
2 | 1 | simprbi 479 | . . . 4 ⊢ (𝐵 ⊆ (𝐵 ∖ {𝐴}) → ¬ 𝐴 ∈ 𝐵) |
3 | 2 | con2i 134 | . . 3 ⊢ (𝐴 ∈ 𝐵 → ¬ 𝐵 ⊆ (𝐵 ∖ {𝐴})) |
4 | elsetrecs.1 | . . . 4 ⊢ 𝐵 = setrecs(𝐹) | |
5 | sseq1 3659 | . . . . . . . . 9 ⊢ (𝑥 = 𝑎 → (𝑥 ⊆ 𝐵 ↔ 𝑎 ⊆ 𝐵)) | |
6 | fveq2 6229 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑎 → (𝐹‘𝑥) = (𝐹‘𝑎)) | |
7 | 6 | eleq2d 2716 | . . . . . . . . 9 ⊢ (𝑥 = 𝑎 → (𝐴 ∈ (𝐹‘𝑥) ↔ 𝐴 ∈ (𝐹‘𝑎))) |
8 | 5, 7 | anbi12d 747 | . . . . . . . 8 ⊢ (𝑥 = 𝑎 → ((𝑥 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑥)) ↔ (𝑎 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑎)))) |
9 | 8 | notbid 307 | . . . . . . 7 ⊢ (𝑥 = 𝑎 → (¬ (𝑥 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑥)) ↔ ¬ (𝑎 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑎)))) |
10 | 9 | spv 2296 | . . . . . 6 ⊢ (∀𝑥 ¬ (𝑥 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑥)) → ¬ (𝑎 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑎))) |
11 | imnan 437 | . . . . . . . . 9 ⊢ ((𝑎 ⊆ 𝐵 → ¬ 𝐴 ∈ (𝐹‘𝑎)) ↔ ¬ (𝑎 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑎))) | |
12 | idd 24 | . . . . . . . . . . 11 ⊢ (𝑎 ⊆ 𝐵 → (¬ 𝐴 ∈ (𝐹‘𝑎) → ¬ 𝐴 ∈ (𝐹‘𝑎))) | |
13 | vex 3234 | . . . . . . . . . . . . 13 ⊢ 𝑎 ∈ V | |
14 | 13 | a1i 11 | . . . . . . . . . . . 12 ⊢ (𝑎 ⊆ 𝐵 → 𝑎 ∈ V) |
15 | id 22 | . . . . . . . . . . . 12 ⊢ (𝑎 ⊆ 𝐵 → 𝑎 ⊆ 𝐵) | |
16 | 4, 14, 15 | setrec1 42763 | . . . . . . . . . . 11 ⊢ (𝑎 ⊆ 𝐵 → (𝐹‘𝑎) ⊆ 𝐵) |
17 | 12, 16 | jctild 565 | . . . . . . . . . 10 ⊢ (𝑎 ⊆ 𝐵 → (¬ 𝐴 ∈ (𝐹‘𝑎) → ((𝐹‘𝑎) ⊆ 𝐵 ∧ ¬ 𝐴 ∈ (𝐹‘𝑎)))) |
18 | 17 | a2i 14 | . . . . . . . . 9 ⊢ ((𝑎 ⊆ 𝐵 → ¬ 𝐴 ∈ (𝐹‘𝑎)) → (𝑎 ⊆ 𝐵 → ((𝐹‘𝑎) ⊆ 𝐵 ∧ ¬ 𝐴 ∈ (𝐹‘𝑎)))) |
19 | 11, 18 | sylbir 225 | . . . . . . . 8 ⊢ (¬ (𝑎 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑎)) → (𝑎 ⊆ 𝐵 → ((𝐹‘𝑎) ⊆ 𝐵 ∧ ¬ 𝐴 ∈ (𝐹‘𝑎)))) |
20 | 19 | adantrd 483 | . . . . . . 7 ⊢ (¬ (𝑎 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑎)) → ((𝑎 ⊆ 𝐵 ∧ ¬ 𝐴 ∈ 𝑎) → ((𝐹‘𝑎) ⊆ 𝐵 ∧ ¬ 𝐴 ∈ (𝐹‘𝑎)))) |
21 | ssdifsn 4351 | . . . . . . 7 ⊢ (𝑎 ⊆ (𝐵 ∖ {𝐴}) ↔ (𝑎 ⊆ 𝐵 ∧ ¬ 𝐴 ∈ 𝑎)) | |
22 | ssdifsn 4351 | . . . . . . 7 ⊢ ((𝐹‘𝑎) ⊆ (𝐵 ∖ {𝐴}) ↔ ((𝐹‘𝑎) ⊆ 𝐵 ∧ ¬ 𝐴 ∈ (𝐹‘𝑎))) | |
23 | 20, 21, 22 | 3imtr4g 285 | . . . . . 6 ⊢ (¬ (𝑎 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑎)) → (𝑎 ⊆ (𝐵 ∖ {𝐴}) → (𝐹‘𝑎) ⊆ (𝐵 ∖ {𝐴}))) |
24 | 10, 23 | syl 17 | . . . . 5 ⊢ (∀𝑥 ¬ (𝑥 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑥)) → (𝑎 ⊆ (𝐵 ∖ {𝐴}) → (𝐹‘𝑎) ⊆ (𝐵 ∖ {𝐴}))) |
25 | 24 | alrimiv 1895 | . . . 4 ⊢ (∀𝑥 ¬ (𝑥 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑥)) → ∀𝑎(𝑎 ⊆ (𝐵 ∖ {𝐴}) → (𝐹‘𝑎) ⊆ (𝐵 ∖ {𝐴}))) |
26 | 4, 25 | setrec2v 42768 | . . 3 ⊢ (∀𝑥 ¬ (𝑥 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑥)) → 𝐵 ⊆ (𝐵 ∖ {𝐴})) |
27 | 3, 26 | nsyl 135 | . 2 ⊢ (𝐴 ∈ 𝐵 → ¬ ∀𝑥 ¬ (𝑥 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑥))) |
28 | df-ex 1745 | . 2 ⊢ (∃𝑥(𝑥 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑥)) ↔ ¬ ∀𝑥 ¬ (𝑥 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑥))) | |
29 | 27, 28 | sylibr 224 | 1 ⊢ (𝐴 ∈ 𝐵 → ∃𝑥(𝑥 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 ∀wal 1521 = wceq 1523 ∃wex 1744 ∈ wcel 2030 Vcvv 3231 ∖ cdif 3604 ⊆ wss 3607 {csn 4210 ‘cfv 5926 setrecscsetrecs 42755 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-reg 8538 ax-inf2 8576 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-iin 4555 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-om 7108 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-r1 8665 df-rank 8666 df-setrecs 42756 |
This theorem is referenced by: elsetrecs 42771 |
Copyright terms: Public domain | W3C validator |