Mathbox for Jeff Hankins < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eltail Structured version   Visualization version   GIF version

Theorem eltail 32011
 Description: An element of a tail. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 24-Nov-2013.)
Hypothesis
Ref Expression
tailfval.1 𝑋 = dom 𝐷
Assertion
Ref Expression
eltail ((𝐷 ∈ DirRel ∧ 𝐴𝑋𝐵𝐶) → (𝐵 ∈ ((tail‘𝐷)‘𝐴) ↔ 𝐴𝐷𝐵))

Proof of Theorem eltail
StepHypRef Expression
1 tailfval.1 . . . . 5 𝑋 = dom 𝐷
21tailval 32010 . . . 4 ((𝐷 ∈ DirRel ∧ 𝐴𝑋) → ((tail‘𝐷)‘𝐴) = (𝐷 “ {𝐴}))
32eleq2d 2684 . . 3 ((𝐷 ∈ DirRel ∧ 𝐴𝑋) → (𝐵 ∈ ((tail‘𝐷)‘𝐴) ↔ 𝐵 ∈ (𝐷 “ {𝐴})))
433adant3 1079 . 2 ((𝐷 ∈ DirRel ∧ 𝐴𝑋𝐵𝐶) → (𝐵 ∈ ((tail‘𝐷)‘𝐴) ↔ 𝐵 ∈ (𝐷 “ {𝐴})))
5 elimasng 5450 . . . 4 ((𝐴𝑋𝐵𝐶) → (𝐵 ∈ (𝐷 “ {𝐴}) ↔ ⟨𝐴, 𝐵⟩ ∈ 𝐷))
6 df-br 4614 . . . 4 (𝐴𝐷𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝐷)
75, 6syl6bbr 278 . . 3 ((𝐴𝑋𝐵𝐶) → (𝐵 ∈ (𝐷 “ {𝐴}) ↔ 𝐴𝐷𝐵))
873adant1 1077 . 2 ((𝐷 ∈ DirRel ∧ 𝐴𝑋𝐵𝐶) → (𝐵 ∈ (𝐷 “ {𝐴}) ↔ 𝐴𝐷𝐵))
94, 8bitrd 268 1 ((𝐷 ∈ DirRel ∧ 𝐴𝑋𝐵𝐶) → (𝐵 ∈ ((tail‘𝐷)‘𝐴) ↔ 𝐴𝐷𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987  {csn 4148  ⟨cop 4154   class class class wbr 4613  dom cdm 5074   “ cima 5077  ‘cfv 5847  DirRelcdir 17149  tailctail 17150 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pr 4867  ax-un 6902 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-dir 17151  df-tail 17152 This theorem is referenced by:  tailini  32013  tailfb  32014  filnetlem4  32018
 Copyright terms: Public domain W3C validator