Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  eltpg Structured version   Visualization version   GIF version

Theorem eltpg 4363
 Description: Members of an unordered triple of classes. (Contributed by FL, 2-Feb-2014.) (Proof shortened by Mario Carneiro, 11-Feb-2015.)
Assertion
Ref Expression
eltpg (𝐴𝑉 → (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ (𝐴 = 𝐵𝐴 = 𝐶𝐴 = 𝐷)))

Proof of Theorem eltpg
StepHypRef Expression
1 elprg 4333 . . 3 (𝐴𝑉 → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵𝐴 = 𝐶)))
2 elsng 4327 . . 3 (𝐴𝑉 → (𝐴 ∈ {𝐷} ↔ 𝐴 = 𝐷))
31, 2orbi12d 748 . 2 (𝐴𝑉 → ((𝐴 ∈ {𝐵, 𝐶} ∨ 𝐴 ∈ {𝐷}) ↔ ((𝐴 = 𝐵𝐴 = 𝐶) ∨ 𝐴 = 𝐷)))
4 df-tp 4318 . . . 4 {𝐵, 𝐶, 𝐷} = ({𝐵, 𝐶} ∪ {𝐷})
54eleq2i 2823 . . 3 (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ 𝐴 ∈ ({𝐵, 𝐶} ∪ {𝐷}))
6 elun 3888 . . 3 (𝐴 ∈ ({𝐵, 𝐶} ∪ {𝐷}) ↔ (𝐴 ∈ {𝐵, 𝐶} ∨ 𝐴 ∈ {𝐷}))
75, 6bitri 264 . 2 (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ (𝐴 ∈ {𝐵, 𝐶} ∨ 𝐴 ∈ {𝐷}))
8 df-3or 1073 . 2 ((𝐴 = 𝐵𝐴 = 𝐶𝐴 = 𝐷) ↔ ((𝐴 = 𝐵𝐴 = 𝐶) ∨ 𝐴 = 𝐷))
93, 7, 83bitr4g 303 1 (𝐴𝑉 → (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ (𝐴 = 𝐵𝐴 = 𝐶𝐴 = 𝐷)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∨ wo 382   ∨ w3o 1071   = wceq 1624   ∈ wcel 2131   ∪ cun 3705  {csn 4313  {cpr 4315  {ctp 4317 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-v 3334  df-un 3712  df-sn 4314  df-pr 4316  df-tp 4318 This theorem is referenced by:  eldiftp  4364  eltpi  4365  eltp  4366  tpid3g  4441  f1dom3fv3dif  6680  f1dom3el3dif  6681  lcmftp  15543  estrreslem2  16971  1cubr  24760  zabsle1  25212  nb3grprlem1  26472  tpid2g  39807  tpid1g  39813
 Copyright terms: Public domain W3C validator