Mathbox for Richard Penner < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eltrclrec Structured version   Visualization version   GIF version

Theorem eltrclrec 37791
 Description: Membership in the indexed union of relation exponentiation over the natural numbers is equivalent to the existence of at least one number such that the element is a member of that relationship power. (Contributed by RP, 2-Jun-2020.)
Hypothesis
Ref Expression
trclrec.def 𝐶 = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ (𝑟𝑟𝑛))
Assertion
Ref Expression
eltrclrec (𝑅𝑉 → (𝑋 ∈ (𝐶𝑅) ↔ ∃𝑛 ∈ ℕ 𝑋 ∈ (𝑅𝑟𝑛)))
Distinct variable groups:   𝑛,𝑟,𝐶   𝑅,𝑛,𝑟   𝑛,𝑋
Allowed substitution hints:   𝑉(𝑛,𝑟)   𝑋(𝑟)

Proof of Theorem eltrclrec
StepHypRef Expression
1 nnex 11011 . 2 ℕ ∈ V
2 trclrec.def . . 3 𝐶 = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ (𝑟𝑟𝑛))
32eliunov2 37790 . 2 ((𝑅𝑉 ∧ ℕ ∈ V) → (𝑋 ∈ (𝐶𝑅) ↔ ∃𝑛 ∈ ℕ 𝑋 ∈ (𝑅𝑟𝑛)))
41, 3mpan2 706 1 (𝑅𝑉 → (𝑋 ∈ (𝐶𝑅) ↔ ∃𝑛 ∈ ℕ 𝑋 ∈ (𝑅𝑟𝑛)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   = wceq 1481   ∈ wcel 1988  ∃wrex 2910  Vcvv 3195  ∪ ciun 4511   ↦ cmpt 4720  ‘cfv 5876  (class class class)co 6635  ℕcn 11005  ↑𝑟crelexp 13741 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-i2m1 9989  ax-1ne0 9990  ax-rrecex 9993  ax-cnre 9994 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-reu 2916  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-ov 6638  df-om 7051  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-nn 11006 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator