MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eltsk2g Structured version   Visualization version   GIF version

Theorem eltsk2g 9763
Description: Properties of a Tarski class. (Contributed by FL, 30-Dec-2010.) (Revised by Mario Carneiro, 20-Sep-2014.)
Assertion
Ref Expression
eltsk2g (𝑇𝑉 → (𝑇 ∈ Tarski ↔ (∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ 𝒫 𝑧𝑇) ∧ ∀𝑧 ∈ 𝒫 𝑇(𝑧𝑇𝑧𝑇))))
Distinct variable group:   𝑧,𝑇
Allowed substitution hint:   𝑉(𝑧)

Proof of Theorem eltsk2g
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 eltskg 9762 . 2 (𝑇𝑉 → (𝑇 ∈ Tarski ↔ (∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ ∃𝑤𝑇 𝒫 𝑧𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑇(𝑧𝑇𝑧𝑇))))
2 nfra1 3077 . . . . . . 7 𝑧𝑧𝑇 𝒫 𝑧𝑇
3 pweq 4303 . . . . . . . . . . . 12 (𝑧 = 𝑤 → 𝒫 𝑧 = 𝒫 𝑤)
43sseq1d 3771 . . . . . . . . . . 11 (𝑧 = 𝑤 → (𝒫 𝑧𝑇 ↔ 𝒫 𝑤𝑇))
54rspccva 3446 . . . . . . . . . 10 ((∀𝑧𝑇 𝒫 𝑧𝑇𝑤𝑇) → 𝒫 𝑤𝑇)
65adantlr 753 . . . . . . . . 9 (((∀𝑧𝑇 𝒫 𝑧𝑇𝑧𝑇) ∧ 𝑤𝑇) → 𝒫 𝑤𝑇)
7 vpwex 4996 . . . . . . . . . . 11 𝒫 𝑧 ∈ V
87elpw 4306 . . . . . . . . . 10 (𝒫 𝑧 ∈ 𝒫 𝑤 ↔ 𝒫 𝑧𝑤)
9 ssel 3736 . . . . . . . . . 10 (𝒫 𝑤𝑇 → (𝒫 𝑧 ∈ 𝒫 𝑤 → 𝒫 𝑧𝑇))
108, 9syl5bir 233 . . . . . . . . 9 (𝒫 𝑤𝑇 → (𝒫 𝑧𝑤 → 𝒫 𝑧𝑇))
116, 10syl 17 . . . . . . . 8 (((∀𝑧𝑇 𝒫 𝑧𝑇𝑧𝑇) ∧ 𝑤𝑇) → (𝒫 𝑧𝑤 → 𝒫 𝑧𝑇))
1211rexlimdva 3167 . . . . . . 7 ((∀𝑧𝑇 𝒫 𝑧𝑇𝑧𝑇) → (∃𝑤𝑇 𝒫 𝑧𝑤 → 𝒫 𝑧𝑇))
132, 12ralimdaa 3094 . . . . . 6 (∀𝑧𝑇 𝒫 𝑧𝑇 → (∀𝑧𝑇𝑤𝑇 𝒫 𝑧𝑤 → ∀𝑧𝑇 𝒫 𝑧𝑇))
1413imdistani 728 . . . . 5 ((∀𝑧𝑇 𝒫 𝑧𝑇 ∧ ∀𝑧𝑇𝑤𝑇 𝒫 𝑧𝑤) → (∀𝑧𝑇 𝒫 𝑧𝑇 ∧ ∀𝑧𝑇 𝒫 𝑧𝑇))
15 r19.26 3200 . . . . 5 (∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ ∃𝑤𝑇 𝒫 𝑧𝑤) ↔ (∀𝑧𝑇 𝒫 𝑧𝑇 ∧ ∀𝑧𝑇𝑤𝑇 𝒫 𝑧𝑤))
16 r19.26 3200 . . . . 5 (∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ 𝒫 𝑧𝑇) ↔ (∀𝑧𝑇 𝒫 𝑧𝑇 ∧ ∀𝑧𝑇 𝒫 𝑧𝑇))
1714, 15, 163imtr4i 281 . . . 4 (∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ ∃𝑤𝑇 𝒫 𝑧𝑤) → ∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ 𝒫 𝑧𝑇))
18 ssid 3763 . . . . . . 7 𝒫 𝑧 ⊆ 𝒫 𝑧
19 sseq2 3766 . . . . . . . 8 (𝑤 = 𝒫 𝑧 → (𝒫 𝑧𝑤 ↔ 𝒫 𝑧 ⊆ 𝒫 𝑧))
2019rspcev 3447 . . . . . . 7 ((𝒫 𝑧𝑇 ∧ 𝒫 𝑧 ⊆ 𝒫 𝑧) → ∃𝑤𝑇 𝒫 𝑧𝑤)
2118, 20mpan2 709 . . . . . 6 (𝒫 𝑧𝑇 → ∃𝑤𝑇 𝒫 𝑧𝑤)
2221anim2i 594 . . . . 5 ((𝒫 𝑧𝑇 ∧ 𝒫 𝑧𝑇) → (𝒫 𝑧𝑇 ∧ ∃𝑤𝑇 𝒫 𝑧𝑤))
2322ralimi 3088 . . . 4 (∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ 𝒫 𝑧𝑇) → ∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ ∃𝑤𝑇 𝒫 𝑧𝑤))
2417, 23impbii 199 . . 3 (∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ ∃𝑤𝑇 𝒫 𝑧𝑤) ↔ ∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ 𝒫 𝑧𝑇))
2524anbi1i 733 . 2 ((∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ ∃𝑤𝑇 𝒫 𝑧𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑇(𝑧𝑇𝑧𝑇)) ↔ (∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ 𝒫 𝑧𝑇) ∧ ∀𝑧 ∈ 𝒫 𝑇(𝑧𝑇𝑧𝑇)))
261, 25syl6bb 276 1 (𝑇𝑉 → (𝑇 ∈ Tarski ↔ (∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ 𝒫 𝑧𝑇) ∧ ∀𝑧 ∈ 𝒫 𝑇(𝑧𝑇𝑧𝑇))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 382  wa 383  wcel 2137  wral 3048  wrex 3049  wss 3713  𝒫 cpw 4300   class class class wbr 4802  cen 8116  Tarskictsk 9760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1986  ax-6 2052  ax-7 2088  ax-9 2146  ax-10 2166  ax-11 2181  ax-12 2194  ax-13 2389  ax-ext 2738  ax-sep 4931  ax-pow 4990
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2045  df-clab 2745  df-cleq 2751  df-clel 2754  df-nfc 2889  df-ral 3053  df-rex 3054  df-rab 3057  df-v 3340  df-dif 3716  df-un 3718  df-in 3720  df-ss 3727  df-nul 4057  df-if 4229  df-pw 4302  df-sn 4320  df-pr 4322  df-op 4326  df-br 4803  df-tsk 9761
This theorem is referenced by:  tskpw  9765  0tsk  9767  inttsk  9786  inatsk  9790
  Copyright terms: Public domain W3C validator