MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eltsk2g Structured version   Visualization version   GIF version

Theorem eltsk2g 10172
Description: Properties of a Tarski class. (Contributed by FL, 30-Dec-2010.) (Revised by Mario Carneiro, 20-Sep-2014.)
Assertion
Ref Expression
eltsk2g (𝑇𝑉 → (𝑇 ∈ Tarski ↔ (∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ 𝒫 𝑧𝑇) ∧ ∀𝑧 ∈ 𝒫 𝑇(𝑧𝑇𝑧𝑇))))
Distinct variable group:   𝑧,𝑇
Allowed substitution hint:   𝑉(𝑧)

Proof of Theorem eltsk2g
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 eltskg 10171 . 2 (𝑇𝑉 → (𝑇 ∈ Tarski ↔ (∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ ∃𝑤𝑇 𝒫 𝑧𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑇(𝑧𝑇𝑧𝑇))))
2 nfra1 3219 . . . . . . 7 𝑧𝑧𝑇 𝒫 𝑧𝑇
3 pweq 4554 . . . . . . . . . . . 12 (𝑧 = 𝑤 → 𝒫 𝑧 = 𝒫 𝑤)
43sseq1d 3997 . . . . . . . . . . 11 (𝑧 = 𝑤 → (𝒫 𝑧𝑇 ↔ 𝒫 𝑤𝑇))
54rspccva 3621 . . . . . . . . . 10 ((∀𝑧𝑇 𝒫 𝑧𝑇𝑤𝑇) → 𝒫 𝑤𝑇)
65adantlr 713 . . . . . . . . 9 (((∀𝑧𝑇 𝒫 𝑧𝑇𝑧𝑇) ∧ 𝑤𝑇) → 𝒫 𝑤𝑇)
7 vpwex 5277 . . . . . . . . . . 11 𝒫 𝑧 ∈ V
87elpw 4542 . . . . . . . . . 10 (𝒫 𝑧 ∈ 𝒫 𝑤 ↔ 𝒫 𝑧𝑤)
9 ssel 3960 . . . . . . . . . 10 (𝒫 𝑤𝑇 → (𝒫 𝑧 ∈ 𝒫 𝑤 → 𝒫 𝑧𝑇))
108, 9syl5bir 245 . . . . . . . . 9 (𝒫 𝑤𝑇 → (𝒫 𝑧𝑤 → 𝒫 𝑧𝑇))
116, 10syl 17 . . . . . . . 8 (((∀𝑧𝑇 𝒫 𝑧𝑇𝑧𝑇) ∧ 𝑤𝑇) → (𝒫 𝑧𝑤 → 𝒫 𝑧𝑇))
1211rexlimdva 3284 . . . . . . 7 ((∀𝑧𝑇 𝒫 𝑧𝑇𝑧𝑇) → (∃𝑤𝑇 𝒫 𝑧𝑤 → 𝒫 𝑧𝑇))
132, 12ralimdaa 3217 . . . . . 6 (∀𝑧𝑇 𝒫 𝑧𝑇 → (∀𝑧𝑇𝑤𝑇 𝒫 𝑧𝑤 → ∀𝑧𝑇 𝒫 𝑧𝑇))
1413imdistani 571 . . . . 5 ((∀𝑧𝑇 𝒫 𝑧𝑇 ∧ ∀𝑧𝑇𝑤𝑇 𝒫 𝑧𝑤) → (∀𝑧𝑇 𝒫 𝑧𝑇 ∧ ∀𝑧𝑇 𝒫 𝑧𝑇))
15 r19.26 3170 . . . . 5 (∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ ∃𝑤𝑇 𝒫 𝑧𝑤) ↔ (∀𝑧𝑇 𝒫 𝑧𝑇 ∧ ∀𝑧𝑇𝑤𝑇 𝒫 𝑧𝑤))
16 r19.26 3170 . . . . 5 (∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ 𝒫 𝑧𝑇) ↔ (∀𝑧𝑇 𝒫 𝑧𝑇 ∧ ∀𝑧𝑇 𝒫 𝑧𝑇))
1714, 15, 163imtr4i 294 . . . 4 (∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ ∃𝑤𝑇 𝒫 𝑧𝑤) → ∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ 𝒫 𝑧𝑇))
18 ssid 3988 . . . . . . 7 𝒫 𝑧 ⊆ 𝒫 𝑧
19 sseq2 3992 . . . . . . . 8 (𝑤 = 𝒫 𝑧 → (𝒫 𝑧𝑤 ↔ 𝒫 𝑧 ⊆ 𝒫 𝑧))
2019rspcev 3622 . . . . . . 7 ((𝒫 𝑧𝑇 ∧ 𝒫 𝑧 ⊆ 𝒫 𝑧) → ∃𝑤𝑇 𝒫 𝑧𝑤)
2118, 20mpan2 689 . . . . . 6 (𝒫 𝑧𝑇 → ∃𝑤𝑇 𝒫 𝑧𝑤)
2221anim2i 618 . . . . 5 ((𝒫 𝑧𝑇 ∧ 𝒫 𝑧𝑇) → (𝒫 𝑧𝑇 ∧ ∃𝑤𝑇 𝒫 𝑧𝑤))
2322ralimi 3160 . . . 4 (∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ 𝒫 𝑧𝑇) → ∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ ∃𝑤𝑇 𝒫 𝑧𝑤))
2417, 23impbii 211 . . 3 (∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ ∃𝑤𝑇 𝒫 𝑧𝑤) ↔ ∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ 𝒫 𝑧𝑇))
2524anbi1i 625 . 2 ((∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ ∃𝑤𝑇 𝒫 𝑧𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑇(𝑧𝑇𝑧𝑇)) ↔ (∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ 𝒫 𝑧𝑇) ∧ ∀𝑧 ∈ 𝒫 𝑇(𝑧𝑇𝑧𝑇)))
261, 25syl6bb 289 1 (𝑇𝑉 → (𝑇 ∈ Tarski ↔ (∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ 𝒫 𝑧𝑇) ∧ ∀𝑧 ∈ 𝒫 𝑇(𝑧𝑇𝑧𝑇))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843  wcel 2110  wral 3138  wrex 3139  wss 3935  𝒫 cpw 4538   class class class wbr 5065  cen 8505  Tarskictsk 10169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-pow 5265
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-br 5066  df-tsk 10170
This theorem is referenced by:  tskpw  10174  0tsk  10176  inttsk  10195  inatsk  10199
  Copyright terms: Public domain W3C validator