![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eltskg | Structured version Visualization version GIF version |
Description: Properties of a Tarski class. (Contributed by FL, 30-Dec-2010.) |
Ref | Expression |
---|---|
eltskg | ⊢ (𝑇 ∈ 𝑉 → (𝑇 ∈ Tarski ↔ (∀𝑧 ∈ 𝑇 (𝒫 𝑧 ⊆ 𝑇 ∧ ∃𝑤 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑇(𝑧 ≈ 𝑇 ∨ 𝑧 ∈ 𝑇)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq2 3660 | . . . . 5 ⊢ (𝑦 = 𝑇 → (𝒫 𝑧 ⊆ 𝑦 ↔ 𝒫 𝑧 ⊆ 𝑇)) | |
2 | rexeq 3169 | . . . . 5 ⊢ (𝑦 = 𝑇 → (∃𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤 ↔ ∃𝑤 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑤)) | |
3 | 1, 2 | anbi12d 747 | . . . 4 ⊢ (𝑦 = 𝑇 → ((𝒫 𝑧 ⊆ 𝑦 ∧ ∃𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤) ↔ (𝒫 𝑧 ⊆ 𝑇 ∧ ∃𝑤 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑤))) |
4 | 3 | raleqbi1dv 3176 | . . 3 ⊢ (𝑦 = 𝑇 → (∀𝑧 ∈ 𝑦 (𝒫 𝑧 ⊆ 𝑦 ∧ ∃𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤) ↔ ∀𝑧 ∈ 𝑇 (𝒫 𝑧 ⊆ 𝑇 ∧ ∃𝑤 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑤))) |
5 | pweq 4194 | . . . 4 ⊢ (𝑦 = 𝑇 → 𝒫 𝑦 = 𝒫 𝑇) | |
6 | breq2 4689 | . . . . 5 ⊢ (𝑦 = 𝑇 → (𝑧 ≈ 𝑦 ↔ 𝑧 ≈ 𝑇)) | |
7 | eleq2 2719 | . . . . 5 ⊢ (𝑦 = 𝑇 → (𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝑇)) | |
8 | 6, 7 | orbi12d 746 | . . . 4 ⊢ (𝑦 = 𝑇 → ((𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦) ↔ (𝑧 ≈ 𝑇 ∨ 𝑧 ∈ 𝑇))) |
9 | 5, 8 | raleqbidv 3182 | . . 3 ⊢ (𝑦 = 𝑇 → (∀𝑧 ∈ 𝒫 𝑦(𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦) ↔ ∀𝑧 ∈ 𝒫 𝑇(𝑧 ≈ 𝑇 ∨ 𝑧 ∈ 𝑇))) |
10 | 4, 9 | anbi12d 747 | . 2 ⊢ (𝑦 = 𝑇 → ((∀𝑧 ∈ 𝑦 (𝒫 𝑧 ⊆ 𝑦 ∧ ∃𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦)) ↔ (∀𝑧 ∈ 𝑇 (𝒫 𝑧 ⊆ 𝑇 ∧ ∃𝑤 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑇(𝑧 ≈ 𝑇 ∨ 𝑧 ∈ 𝑇)))) |
11 | df-tsk 9609 | . 2 ⊢ Tarski = {𝑦 ∣ (∀𝑧 ∈ 𝑦 (𝒫 𝑧 ⊆ 𝑦 ∧ ∃𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦))} | |
12 | 10, 11 | elab2g 3385 | 1 ⊢ (𝑇 ∈ 𝑉 → (𝑇 ∈ Tarski ↔ (∀𝑧 ∈ 𝑇 (𝒫 𝑧 ⊆ 𝑇 ∧ ∃𝑤 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑇(𝑧 ≈ 𝑇 ∨ 𝑧 ∈ 𝑇)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∨ wo 382 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∀wral 2941 ∃wrex 2942 ⊆ wss 3607 𝒫 cpw 4191 class class class wbr 4685 ≈ cen 7994 Tarskictsk 9608 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-br 4686 df-tsk 9609 |
This theorem is referenced by: eltsk2g 9611 tskpwss 9612 tsken 9614 grothtsk 9695 |
Copyright terms: Public domain | W3C validator |