MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elunirn Structured version   Visualization version   GIF version

Theorem elunirn 6474
Description: Membership in the union of the range of a function. See elunirnALT 6475 for a shorter proof which uses ax-pow 4813. (Contributed by NM, 24-Sep-2006.)
Assertion
Ref Expression
elunirn (Fun 𝐹 → (𝐴 ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹 𝐴 ∈ (𝐹𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem elunirn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eluni 4412 . 2 (𝐴 ran 𝐹 ↔ ∃𝑦(𝐴𝑦𝑦 ∈ ran 𝐹))
2 funfn 5887 . . . . . . . 8 (Fun 𝐹𝐹 Fn dom 𝐹)
3 fvelrnb 6210 . . . . . . . 8 (𝐹 Fn dom 𝐹 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹(𝐹𝑥) = 𝑦))
42, 3sylbi 207 . . . . . . 7 (Fun 𝐹 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹(𝐹𝑥) = 𝑦))
54anbi2d 739 . . . . . 6 (Fun 𝐹 → ((𝐴𝑦𝑦 ∈ ran 𝐹) ↔ (𝐴𝑦 ∧ ∃𝑥 ∈ dom 𝐹(𝐹𝑥) = 𝑦)))
6 r19.42v 3086 . . . . . 6 (∃𝑥 ∈ dom 𝐹(𝐴𝑦 ∧ (𝐹𝑥) = 𝑦) ↔ (𝐴𝑦 ∧ ∃𝑥 ∈ dom 𝐹(𝐹𝑥) = 𝑦))
75, 6syl6bbr 278 . . . . 5 (Fun 𝐹 → ((𝐴𝑦𝑦 ∈ ran 𝐹) ↔ ∃𝑥 ∈ dom 𝐹(𝐴𝑦 ∧ (𝐹𝑥) = 𝑦)))
8 eleq2 2687 . . . . . . 7 ((𝐹𝑥) = 𝑦 → (𝐴 ∈ (𝐹𝑥) ↔ 𝐴𝑦))
98biimparc 504 . . . . . 6 ((𝐴𝑦 ∧ (𝐹𝑥) = 𝑦) → 𝐴 ∈ (𝐹𝑥))
109reximi 3007 . . . . 5 (∃𝑥 ∈ dom 𝐹(𝐴𝑦 ∧ (𝐹𝑥) = 𝑦) → ∃𝑥 ∈ dom 𝐹 𝐴 ∈ (𝐹𝑥))
117, 10syl6bi 243 . . . 4 (Fun 𝐹 → ((𝐴𝑦𝑦 ∈ ran 𝐹) → ∃𝑥 ∈ dom 𝐹 𝐴 ∈ (𝐹𝑥)))
1211exlimdv 1858 . . 3 (Fun 𝐹 → (∃𝑦(𝐴𝑦𝑦 ∈ ran 𝐹) → ∃𝑥 ∈ dom 𝐹 𝐴 ∈ (𝐹𝑥)))
13 fvelrn 6318 . . . . . . 7 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝐹𝑥) ∈ ran 𝐹)
1413a1d 25 . . . . . 6 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝐴 ∈ (𝐹𝑥) → (𝐹𝑥) ∈ ran 𝐹))
1514ancld 575 . . . . 5 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝐴 ∈ (𝐹𝑥) → (𝐴 ∈ (𝐹𝑥) ∧ (𝐹𝑥) ∈ ran 𝐹)))
16 fvex 6168 . . . . . 6 (𝐹𝑥) ∈ V
17 eleq2 2687 . . . . . . 7 (𝑦 = (𝐹𝑥) → (𝐴𝑦𝐴 ∈ (𝐹𝑥)))
18 eleq1 2686 . . . . . . 7 (𝑦 = (𝐹𝑥) → (𝑦 ∈ ran 𝐹 ↔ (𝐹𝑥) ∈ ran 𝐹))
1917, 18anbi12d 746 . . . . . 6 (𝑦 = (𝐹𝑥) → ((𝐴𝑦𝑦 ∈ ran 𝐹) ↔ (𝐴 ∈ (𝐹𝑥) ∧ (𝐹𝑥) ∈ ran 𝐹)))
2016, 19spcev 3290 . . . . 5 ((𝐴 ∈ (𝐹𝑥) ∧ (𝐹𝑥) ∈ ran 𝐹) → ∃𝑦(𝐴𝑦𝑦 ∈ ran 𝐹))
2115, 20syl6 35 . . . 4 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝐴 ∈ (𝐹𝑥) → ∃𝑦(𝐴𝑦𝑦 ∈ ran 𝐹)))
2221rexlimdva 3026 . . 3 (Fun 𝐹 → (∃𝑥 ∈ dom 𝐹 𝐴 ∈ (𝐹𝑥) → ∃𝑦(𝐴𝑦𝑦 ∈ ran 𝐹)))
2312, 22impbid 202 . 2 (Fun 𝐹 → (∃𝑦(𝐴𝑦𝑦 ∈ ran 𝐹) ↔ ∃𝑥 ∈ dom 𝐹 𝐴 ∈ (𝐹𝑥)))
241, 23syl5bb 272 1 (Fun 𝐹 → (𝐴 ran 𝐹 ↔ ∃𝑥 ∈ dom 𝐹 𝐴 ∈ (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wex 1701  wcel 1987  wrex 2909   cuni 4409  dom cdm 5084  ran crn 5085  Fun wfun 5851   Fn wfn 5852  cfv 5857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pr 4877
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2913  df-rex 2914  df-rab 2917  df-v 3192  df-sbc 3423  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-br 4624  df-opab 4684  df-mpt 4685  df-id 4999  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-iota 5820  df-fun 5859  df-fn 5860  df-fv 5865
This theorem is referenced by:  fnunirn  6476  fin23lem30  9124  ustn0  21964  elrnust  21968  ustbas  21971  metuval  22294  elunirn2  29334  metidval  29757  pstmval  29762  elunirnmbfm  30138  fourierdlem70  39730  fourierdlem71  39731  fourierdlem80  39740
  Copyright terms: Public domain W3C validator