Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eluz2cnn0n1 Structured version   Visualization version   GIF version

Theorem eluz2cnn0n1 44565
Description: An integer greater than 1 is a complex number not equal to 0 or 1. (Contributed by AV, 23-May-2020.)
Assertion
Ref Expression
eluz2cnn0n1 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ (ℂ ∖ {0, 1}))

Proof of Theorem eluz2cnn0n1
StepHypRef Expression
1 nncn 11645 . . . 4 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
21adantr 483 . . 3 ((𝐵 ∈ ℕ ∧ 𝐵 ≠ 1) → 𝐵 ∈ ℂ)
3 nnne0 11670 . . . 4 (𝐵 ∈ ℕ → 𝐵 ≠ 0)
43adantr 483 . . 3 ((𝐵 ∈ ℕ ∧ 𝐵 ≠ 1) → 𝐵 ≠ 0)
5 simpr 487 . . 3 ((𝐵 ∈ ℕ ∧ 𝐵 ≠ 1) → 𝐵 ≠ 1)
62, 4, 53jca 1124 . 2 ((𝐵 ∈ ℕ ∧ 𝐵 ≠ 1) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1))
7 eluz2b3 12321 . 2 (𝐵 ∈ (ℤ‘2) ↔ (𝐵 ∈ ℕ ∧ 𝐵 ≠ 1))
8 eldifpr 4596 . 2 (𝐵 ∈ (ℂ ∖ {0, 1}) ↔ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1))
96, 7, 83imtr4i 294 1 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ (ℂ ∖ {0, 1}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083  wcel 2110  wne 3016  cdif 3932  {cpr 4568  cfv 6354  cc 10534  0cc0 10536  1c1 10537  cn 11637  2c2 11691  cuz 12242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-2 11699  df-n0 11897  df-z 11981  df-uz 12243
This theorem is referenced by:  fllogbd  44619  blennnt2  44648  dignn0ldlem  44661
  Copyright terms: Public domain W3C validator