![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eluzd | Structured version Visualization version GIF version |
Description: Membership in an upper set of integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
eluzd.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
eluzd.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
eluzd.3 | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
eluzd.4 | ⊢ (𝜑 → 𝑀 ≤ 𝑁) |
Ref | Expression |
---|---|
eluzd | ⊢ (𝜑 → 𝑁 ∈ 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzd.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
2 | eluzd.3 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
3 | eluzd.4 | . . 3 ⊢ (𝜑 → 𝑀 ≤ 𝑁) | |
4 | eluz2 11731 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) | |
5 | 1, 2, 3, 4 | syl3anbrc 1265 | . 2 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
6 | eluzd.1 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
7 | 5, 6 | syl6eleqr 2741 | 1 ⊢ (𝜑 → 𝑁 ∈ 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1523 ∈ wcel 2030 class class class wbr 4685 ‘cfv 5926 ≤ cle 10113 ℤcz 11415 ℤ≥cuz 11725 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-cnex 10030 ax-resscn 10031 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-fv 5934 df-ov 6693 df-neg 10307 df-z 11416 df-uz 11726 |
This theorem is referenced by: uzublem 39970 uzinico 40105 uzubioo 40112 limsupubuzlem 40262 limsupequzlem 40272 limsupmnfuzlem 40276 limsupequzmptlem 40278 limsupre3uzlem 40285 supcnvlimsup 40290 limsup10exlem 40322 smflimsuplem4 41350 smfliminflem 41357 |
Copyright terms: Public domain | W3C validator |