Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eluzge0nn0 Structured version   Visualization version   GIF version

Theorem eluzge0nn0 43505
Description: If an integer is greater than or equal to a nonnegative integer, then it is a nonnegative integer. (Contributed by Alexander van der Vekens, 27-Aug-2018.)
Assertion
Ref Expression
eluzge0nn0 (𝑁 ∈ (ℤ𝑀) → (0 ≤ 𝑀𝑁 ∈ ℕ0))

Proof of Theorem eluzge0nn0
StepHypRef Expression
1 eluz2 12243 . 2 (𝑁 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁))
2 simpl2 1188 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) ∧ 0 ≤ 𝑀) → 𝑁 ∈ ℤ)
3 zre 11979 . . . . . . . . 9 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
4 zre 11979 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
5 0red 10638 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 0 ∈ ℝ)
6 simpl 485 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑀 ∈ ℝ)
7 simpr 487 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑁 ∈ ℝ)
85, 6, 73jca 1124 . . . . . . . . 9 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ))
93, 4, 8syl2an 597 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ))
10 letr 10728 . . . . . . . 8 ((0 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 ≤ 𝑀𝑀𝑁) → 0 ≤ 𝑁))
119, 10syl 17 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((0 ≤ 𝑀𝑀𝑁) → 0 ≤ 𝑁))
1211expcomd 419 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 → (0 ≤ 𝑀 → 0 ≤ 𝑁)))
1312ex 415 . . . . 5 (𝑀 ∈ ℤ → (𝑁 ∈ ℤ → (𝑀𝑁 → (0 ≤ 𝑀 → 0 ≤ 𝑁))))
14133imp1 1343 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) ∧ 0 ≤ 𝑀) → 0 ≤ 𝑁)
15 elnn0z 11988 . . . 4 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁))
162, 14, 15sylanbrc 585 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) ∧ 0 ≤ 𝑀) → 𝑁 ∈ ℕ0)
1716ex 415 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → (0 ≤ 𝑀𝑁 ∈ ℕ0))
181, 17sylbi 219 1 (𝑁 ∈ (ℤ𝑀) → (0 ≤ 𝑀𝑁 ∈ ℕ0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083  wcel 2110   class class class wbr 5059  cfv 6350  cr 10530  0cc0 10531  cle 10670  0cn0 11891  cz 11975  cuz 12237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11892  df-z 11976  df-uz 12238
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator