MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eluzgtdifelfzo Structured version   Visualization version   GIF version

Theorem eluzgtdifelfzo 12347
Description: Membership of the difference of integers in a half-open range of nonnegative integers. (Contributed by Alexander van der Vekens, 17-Sep-2018.)
Assertion
Ref Expression
eluzgtdifelfzo ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴) → (𝑁𝐴) ∈ (0..^(𝑁𝐵))))

Proof of Theorem eluzgtdifelfzo
StepHypRef Expression
1 simpl 471 . . . . 5 ((𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴) → 𝑁 ∈ (ℤ𝐴))
21adantl 480 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → 𝑁 ∈ (ℤ𝐴))
3 simpl 471 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℤ)
43adantr 479 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → 𝐴 ∈ ℤ)
5 eluzelz 11524 . . . . . . . 8 (𝑁 ∈ (ℤ𝐴) → 𝑁 ∈ ℤ)
65ad2antrr 757 . . . . . . 7 (((𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → 𝑁 ∈ ℤ)
7 simprr 791 . . . . . . 7 (((𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → 𝐵 ∈ ℤ)
86, 7zsubcld 11314 . . . . . 6 (((𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → (𝑁𝐵) ∈ ℤ)
98ancoms 467 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → (𝑁𝐵) ∈ ℤ)
104, 9zaddcld 11313 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → (𝐴 + (𝑁𝐵)) ∈ ℤ)
11 zre 11209 . . . . . . . . 9 (𝐵 ∈ ℤ → 𝐵 ∈ ℝ)
12 zre 11209 . . . . . . . . 9 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
13 posdif 10365 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐴 ↔ 0 < (𝐴𝐵)))
1413biimpd 217 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐴 → 0 < (𝐴𝐵)))
1511, 12, 14syl2anr 493 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵 < 𝐴 → 0 < (𝐴𝐵)))
1615adantld 481 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴) → 0 < (𝐴𝐵)))
1716imp 443 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → 0 < (𝐴𝐵))
18 resubcl 10191 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵) ∈ ℝ)
1912, 11, 18syl2an 492 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ ℝ)
2019adantr 479 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → (𝐴𝐵) ∈ ℝ)
21 eluzelre 11525 . . . . . . . 8 (𝑁 ∈ (ℤ𝐴) → 𝑁 ∈ ℝ)
2221ad2antrl 759 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → 𝑁 ∈ ℝ)
2320, 22ltaddposd 10455 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → (0 < (𝐴𝐵) ↔ 𝑁 < (𝑁 + (𝐴𝐵))))
2417, 23mpbid 220 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → 𝑁 < (𝑁 + (𝐴𝐵)))
25 zcn 11210 . . . . . . 7 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
2625ad2antrr 757 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → 𝐴 ∈ ℂ)
27 eluzelcn 11526 . . . . . . 7 (𝑁 ∈ (ℤ𝐴) → 𝑁 ∈ ℂ)
2827ad2antrl 759 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → 𝑁 ∈ ℂ)
29 zcn 11210 . . . . . . . 8 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
3029adantl 480 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℂ)
3130adantr 479 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → 𝐵 ∈ ℂ)
32 addsub12 10140 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + (𝑁𝐵)) = (𝑁 + (𝐴𝐵)))
3332breq2d 4584 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝑁 < (𝐴 + (𝑁𝐵)) ↔ 𝑁 < (𝑁 + (𝐴𝐵))))
3426, 28, 31, 33syl3anc 1317 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → (𝑁 < (𝐴 + (𝑁𝐵)) ↔ 𝑁 < (𝑁 + (𝐴𝐵))))
3524, 34mpbird 245 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → 𝑁 < (𝐴 + (𝑁𝐵)))
36 elfzo2 12292 . . . 4 (𝑁 ∈ (𝐴..^(𝐴 + (𝑁𝐵))) ↔ (𝑁 ∈ (ℤ𝐴) ∧ (𝐴 + (𝑁𝐵)) ∈ ℤ ∧ 𝑁 < (𝐴 + (𝑁𝐵))))
372, 10, 35, 36syl3anbrc 1238 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → 𝑁 ∈ (𝐴..^(𝐴 + (𝑁𝐵))))
38 fzosubel3 12346 . . 3 ((𝑁 ∈ (𝐴..^(𝐴 + (𝑁𝐵))) ∧ (𝑁𝐵) ∈ ℤ) → (𝑁𝐴) ∈ (0..^(𝑁𝐵)))
3937, 9, 38syl2anc 690 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → (𝑁𝐴) ∈ (0..^(𝑁𝐵)))
4039ex 448 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴) → (𝑁𝐴) ∈ (0..^(𝑁𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  w3a 1030  wcel 1975   class class class wbr 4572  cfv 5785  (class class class)co 6522  cc 9785  cr 9786  0cc0 9787   + caddc 9790   < clt 9925  cmin 10112  cz 11205  cuz 11514  ..^cfzo 12284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2227  ax-ext 2584  ax-sep 4698  ax-nul 4707  ax-pow 4759  ax-pr 4823  ax-un 6819  ax-cnex 9843  ax-resscn 9844  ax-1cn 9845  ax-icn 9846  ax-addcl 9847  ax-addrcl 9848  ax-mulcl 9849  ax-mulrcl 9850  ax-mulcom 9851  ax-addass 9852  ax-mulass 9853  ax-distr 9854  ax-i2m1 9855  ax-1ne0 9856  ax-1rid 9857  ax-rnegex 9858  ax-rrecex 9859  ax-cnre 9860  ax-pre-lttri 9861  ax-pre-lttrn 9862  ax-pre-ltadd 9863  ax-pre-mulgt0 9864
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2456  df-mo 2457  df-clab 2591  df-cleq 2597  df-clel 2600  df-nfc 2734  df-ne 2776  df-nel 2777  df-ral 2895  df-rex 2896  df-reu 2897  df-rab 2899  df-v 3169  df-sbc 3397  df-csb 3494  df-dif 3537  df-un 3539  df-in 3541  df-ss 3548  df-pss 3550  df-nul 3869  df-if 4031  df-pw 4104  df-sn 4120  df-pr 4122  df-tp 4124  df-op 4126  df-uni 4362  df-iun 4446  df-br 4573  df-opab 4633  df-mpt 4634  df-tr 4670  df-eprel 4934  df-id 4938  df-po 4944  df-so 4945  df-fr 4982  df-we 4984  df-xp 5029  df-rel 5030  df-cnv 5031  df-co 5032  df-dm 5033  df-rn 5034  df-res 5035  df-ima 5036  df-pred 5578  df-ord 5624  df-on 5625  df-lim 5626  df-suc 5627  df-iota 5749  df-fun 5787  df-fn 5788  df-f 5789  df-f1 5790  df-fo 5791  df-f1o 5792  df-fv 5793  df-riota 6484  df-ov 6525  df-oprab 6526  df-mpt2 6527  df-om 6930  df-1st 7031  df-2nd 7032  df-wrecs 7266  df-recs 7327  df-rdg 7365  df-er 7601  df-en 7814  df-dom 7815  df-sdom 7816  df-pnf 9927  df-mnf 9928  df-xr 9929  df-ltxr 9930  df-le 9931  df-sub 10114  df-neg 10115  df-nn 10863  df-n0 11135  df-z 11206  df-uz 11515  df-fz 12148  df-fzo 12285
This theorem is referenced by:  ige2m2fzo  12348
  Copyright terms: Public domain W3C validator