MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eluzp1m1 Structured version   Visualization version   GIF version

Theorem eluzp1m1 11543
Description: Membership in the next upper set of integers. (Contributed by NM, 12-Sep-2005.)
Assertion
Ref Expression
eluzp1m1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑁 − 1) ∈ (ℤ𝑀))

Proof of Theorem eluzp1m1
StepHypRef Expression
1 peano2zm 11253 . . . . . 6 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
21ad2antrl 759 . . . . 5 ((𝑀 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁)) → (𝑁 − 1) ∈ ℤ)
3 zre 11214 . . . . . . . 8 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
4 zre 11214 . . . . . . . 8 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
5 1re 9895 . . . . . . . . 9 1 ∈ ℝ
6 leaddsub 10353 . . . . . . . . 9 ((𝑀 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 + 1) ≤ 𝑁𝑀 ≤ (𝑁 − 1)))
75, 6mp3an2 1403 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 + 1) ≤ 𝑁𝑀 ≤ (𝑁 − 1)))
83, 4, 7syl2an 492 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 + 1) ≤ 𝑁𝑀 ≤ (𝑁 − 1)))
98biimpa 499 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 + 1) ≤ 𝑁) → 𝑀 ≤ (𝑁 − 1))
109anasss 676 . . . . 5 ((𝑀 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁)) → 𝑀 ≤ (𝑁 − 1))
112, 10jca 552 . . . 4 ((𝑀 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁)) → ((𝑁 − 1) ∈ ℤ ∧ 𝑀 ≤ (𝑁 − 1)))
1211ex 448 . . 3 (𝑀 ∈ ℤ → ((𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁) → ((𝑁 − 1) ∈ ℤ ∧ 𝑀 ≤ (𝑁 − 1))))
13 peano2z 11251 . . . 4 (𝑀 ∈ ℤ → (𝑀 + 1) ∈ ℤ)
14 eluz1 11523 . . . 4 ((𝑀 + 1) ∈ ℤ → (𝑁 ∈ (ℤ‘(𝑀 + 1)) ↔ (𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁)))
1513, 14syl 17 . . 3 (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ‘(𝑀 + 1)) ↔ (𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁)))
16 eluz1 11523 . . 3 (𝑀 ∈ ℤ → ((𝑁 − 1) ∈ (ℤ𝑀) ↔ ((𝑁 − 1) ∈ ℤ ∧ 𝑀 ≤ (𝑁 − 1))))
1712, 15, 163imtr4d 281 . 2 (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ‘(𝑀 + 1)) → (𝑁 − 1) ∈ (ℤ𝑀)))
1817imp 443 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑁 − 1) ∈ (ℤ𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  wcel 1976   class class class wbr 4577  cfv 5790  (class class class)co 6527  cr 9791  1c1 9793   + caddc 9795  cle 9931  cmin 10117  cz 11210  cuz 11519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-er 7606  df-en 7819  df-dom 7820  df-sdom 7821  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-nn 10868  df-n0 11140  df-z 11211  df-uz 11520
This theorem is referenced by:  peano2uzr  11575  fzosplitsnm1  12364  fzofzp1b  12387  seqm1  12635  monoord  12648  seqf1olem2  12658  seqid  12663  seqz  12666  serf0  14205  fsumm1  14270  telfsumo  14321  fsumparts  14325  isumsplit  14357  climcnds  14368  fprodm1  14482  pockthlem  15393  vdwnnlem2  15484  efgs1b  17918  imasdsf1olem  21929  wwlksubclwwlk  26098  stoweidlem11  38701  smonoord  39742  wwlksubclwwlks  41227
  Copyright terms: Public domain W3C validator