MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eluzsubi Structured version   Visualization version   GIF version

Theorem eluzsubi 12260
Description: Membership in an earlier upper set of integers. (Contributed by Paul Chapman, 22-Nov-2007.)
Hypotheses
Ref Expression
eluzaddi.1 𝑀 ∈ ℤ
eluzaddi.2 𝐾 ∈ ℤ
Assertion
Ref Expression
eluzsubi (𝑁 ∈ (ℤ‘(𝑀 + 𝐾)) → (𝑁𝐾) ∈ (ℤ𝑀))

Proof of Theorem eluzsubi
StepHypRef Expression
1 eluzelz 12241 . . 3 (𝑁 ∈ (ℤ‘(𝑀 + 𝐾)) → 𝑁 ∈ ℤ)
2 eluzaddi.2 . . 3 𝐾 ∈ ℤ
3 zsubcl 12012 . . 3 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁𝐾) ∈ ℤ)
41, 2, 3sylancl 586 . 2 (𝑁 ∈ (ℤ‘(𝑀 + 𝐾)) → (𝑁𝐾) ∈ ℤ)
5 eluzaddi.1 . . . . 5 𝑀 ∈ ℤ
6 zaddcl 12010 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 + 𝐾) ∈ ℤ)
75, 2, 6mp2an 688 . . . 4 (𝑀 + 𝐾) ∈ ℤ
87eluz1i 12239 . . 3 (𝑁 ∈ (ℤ‘(𝑀 + 𝐾)) ↔ (𝑁 ∈ ℤ ∧ (𝑀 + 𝐾) ≤ 𝑁))
95zrei 11975 . . . . 5 𝑀 ∈ ℝ
102zrei 11975 . . . . 5 𝐾 ∈ ℝ
11 zre 11973 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
12 leaddsub 11104 . . . . 5 ((𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 + 𝐾) ≤ 𝑁𝑀 ≤ (𝑁𝐾)))
139, 10, 11, 12mp3an12i 1456 . . . 4 (𝑁 ∈ ℤ → ((𝑀 + 𝐾) ≤ 𝑁𝑀 ≤ (𝑁𝐾)))
1413biimpa 477 . . 3 ((𝑁 ∈ ℤ ∧ (𝑀 + 𝐾) ≤ 𝑁) → 𝑀 ≤ (𝑁𝐾))
158, 14sylbi 218 . 2 (𝑁 ∈ (ℤ‘(𝑀 + 𝐾)) → 𝑀 ≤ (𝑁𝐾))
165eluz1i 12239 . 2 ((𝑁𝐾) ∈ (ℤ𝑀) ↔ ((𝑁𝐾) ∈ ℤ ∧ 𝑀 ≤ (𝑁𝐾)))
174, 15, 16sylanbrc 583 1 (𝑁 ∈ (ℤ‘(𝑀 + 𝐾)) → (𝑁𝐾) ∈ (ℤ𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  wcel 2105   class class class wbr 5057  cfv 6348  (class class class)co 7145  cr 10524   + caddc 10528  cle 10664  cmin 10858  cz 11969  cuz 12231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-n0 11886  df-z 11970  df-uz 12232
This theorem is referenced by:  eluzsub  12262
  Copyright terms: Public domain W3C validator