MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elvvv Structured version   Visualization version   GIF version

Theorem elvvv 5622
Description: Membership in universal class of ordered triples. (Contributed by NM, 17-Dec-2008.)
Assertion
Ref Expression
elvvv (𝐴 ∈ ((V × V) × V) ↔ ∃𝑥𝑦𝑧 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩)
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem elvvv
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 elxp 5573 . 2 (𝐴 ∈ ((V × V) × V) ↔ ∃𝑤𝑧(𝐴 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 ∈ (V × V) ∧ 𝑧 ∈ V)))
2 ancom 463 . . . . . 6 ((𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝐴 = ⟨𝑤, 𝑧⟩) ↔ (𝐴 = ⟨𝑤, 𝑧⟩ ∧ 𝑤 = ⟨𝑥, 𝑦⟩))
322exbii 1845 . . . . 5 (∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝐴 = ⟨𝑤, 𝑧⟩) ↔ ∃𝑥𝑦(𝐴 = ⟨𝑤, 𝑧⟩ ∧ 𝑤 = ⟨𝑥, 𝑦⟩))
4 19.42vv 1954 . . . . . 6 (∃𝑥𝑦(𝐴 = ⟨𝑤, 𝑧⟩ ∧ 𝑤 = ⟨𝑥, 𝑦⟩) ↔ (𝐴 = ⟨𝑤, 𝑧⟩ ∧ ∃𝑥𝑦 𝑤 = ⟨𝑥, 𝑦⟩))
5 elvv 5621 . . . . . . 7 (𝑤 ∈ (V × V) ↔ ∃𝑥𝑦 𝑤 = ⟨𝑥, 𝑦⟩)
65anbi2i 624 . . . . . 6 ((𝐴 = ⟨𝑤, 𝑧⟩ ∧ 𝑤 ∈ (V × V)) ↔ (𝐴 = ⟨𝑤, 𝑧⟩ ∧ ∃𝑥𝑦 𝑤 = ⟨𝑥, 𝑦⟩))
7 vex 3498 . . . . . . 7 𝑧 ∈ V
87biantru 532 . . . . . 6 ((𝐴 = ⟨𝑤, 𝑧⟩ ∧ 𝑤 ∈ (V × V)) ↔ ((𝐴 = ⟨𝑤, 𝑧⟩ ∧ 𝑤 ∈ (V × V)) ∧ 𝑧 ∈ V))
94, 6, 83bitr2i 301 . . . . 5 (∃𝑥𝑦(𝐴 = ⟨𝑤, 𝑧⟩ ∧ 𝑤 = ⟨𝑥, 𝑦⟩) ↔ ((𝐴 = ⟨𝑤, 𝑧⟩ ∧ 𝑤 ∈ (V × V)) ∧ 𝑧 ∈ V))
10 anass 471 . . . . 5 (((𝐴 = ⟨𝑤, 𝑧⟩ ∧ 𝑤 ∈ (V × V)) ∧ 𝑧 ∈ V) ↔ (𝐴 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 ∈ (V × V) ∧ 𝑧 ∈ V)))
113, 9, 103bitrri 300 . . . 4 ((𝐴 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 ∈ (V × V) ∧ 𝑧 ∈ V)) ↔ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝐴 = ⟨𝑤, 𝑧⟩))
12112exbii 1845 . . 3 (∃𝑤𝑧(𝐴 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 ∈ (V × V) ∧ 𝑧 ∈ V)) ↔ ∃𝑤𝑧𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝐴 = ⟨𝑤, 𝑧⟩))
13 exrot4 2168 . . 3 (∃𝑥𝑦𝑤𝑧(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝐴 = ⟨𝑤, 𝑧⟩) ↔ ∃𝑤𝑧𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝐴 = ⟨𝑤, 𝑧⟩))
14 excom 2164 . . . . 5 (∃𝑤𝑧(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝐴 = ⟨𝑤, 𝑧⟩) ↔ ∃𝑧𝑤(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝐴 = ⟨𝑤, 𝑧⟩))
15 opex 5349 . . . . . . 7 𝑥, 𝑦⟩ ∈ V
16 opeq1 4797 . . . . . . . 8 (𝑤 = ⟨𝑥, 𝑦⟩ → ⟨𝑤, 𝑧⟩ = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩)
1716eqeq2d 2832 . . . . . . 7 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝐴 = ⟨𝑤, 𝑧⟩ ↔ 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩))
1815, 17ceqsexv 3542 . . . . . 6 (∃𝑤(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝐴 = ⟨𝑤, 𝑧⟩) ↔ 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩)
1918exbii 1844 . . . . 5 (∃𝑧𝑤(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝐴 = ⟨𝑤, 𝑧⟩) ↔ ∃𝑧 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩)
2014, 19bitri 277 . . . 4 (∃𝑤𝑧(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝐴 = ⟨𝑤, 𝑧⟩) ↔ ∃𝑧 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩)
21202exbii 1845 . . 3 (∃𝑥𝑦𝑤𝑧(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝐴 = ⟨𝑤, 𝑧⟩) ↔ ∃𝑥𝑦𝑧 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩)
2212, 13, 213bitr2i 301 . 2 (∃𝑤𝑧(𝐴 = ⟨𝑤, 𝑧⟩ ∧ (𝑤 ∈ (V × V) ∧ 𝑧 ∈ V)) ↔ ∃𝑥𝑦𝑧 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩)
231, 22bitri 277 1 (𝐴 ∈ ((V × V) × V) ↔ ∃𝑥𝑦𝑧 𝐴 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩)
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398   = wceq 1533  wex 1776  wcel 2110  Vcvv 3495  cop 4567   × cxp 5548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pr 5322
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-rab 3147  df-v 3497  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4562  df-pr 4564  df-op 4568  df-opab 5122  df-xp 5556
This theorem is referenced by:  ssrelrel  5664  dftpos3  7904
  Copyright terms: Public domain W3C validator