Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elwlim Structured version   Visualization version   GIF version

Theorem elwlim 33112
Description: Membership in the limit class. (Contributed by Scott Fenton, 15-Jun-2018.) (Revised by AV, 10-Oct-2021.)
Assertion
Ref Expression
elwlim (𝑋 ∈ WLim(𝑅, 𝐴) ↔ (𝑋𝐴𝑋 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑋 = sup(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅)))

Proof of Theorem elwlim
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 neeq1 3080 . . . 4 (𝑥 = 𝑋 → (𝑥 ≠ inf(𝐴, 𝐴, 𝑅) ↔ 𝑋 ≠ inf(𝐴, 𝐴, 𝑅)))
2 id 22 . . . . 5 (𝑥 = 𝑋𝑥 = 𝑋)
3 predeq3 6154 . . . . . 6 (𝑥 = 𝑋 → Pred(𝑅, 𝐴, 𝑥) = Pred(𝑅, 𝐴, 𝑋))
43supeq1d 8912 . . . . 5 (𝑥 = 𝑋 → sup(Pred(𝑅, 𝐴, 𝑥), 𝐴, 𝑅) = sup(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅))
52, 4eqeq12d 2839 . . . 4 (𝑥 = 𝑋 → (𝑥 = sup(Pred(𝑅, 𝐴, 𝑥), 𝐴, 𝑅) ↔ 𝑋 = sup(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅)))
61, 5anbi12d 632 . . 3 (𝑥 = 𝑋 → ((𝑥 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑥 = sup(Pred(𝑅, 𝐴, 𝑥), 𝐴, 𝑅)) ↔ (𝑋 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑋 = sup(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅))))
7 df-wlim 33102 . . 3 WLim(𝑅, 𝐴) = {𝑥𝐴 ∣ (𝑥 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑥 = sup(Pred(𝑅, 𝐴, 𝑥), 𝐴, 𝑅))}
86, 7elrab2 3685 . 2 (𝑋 ∈ WLim(𝑅, 𝐴) ↔ (𝑋𝐴 ∧ (𝑋 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑋 = sup(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅))))
9 3anass 1091 . 2 ((𝑋𝐴𝑋 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑋 = sup(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅)) ↔ (𝑋𝐴 ∧ (𝑋 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑋 = sup(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅))))
108, 9bitr4i 280 1 (𝑋 ∈ WLim(𝑅, 𝐴) ↔ (𝑋𝐴𝑋 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑋 = sup(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3018  Predcpred 6149  supcsup 8906  infcinf 8907  WLimcwlim 33100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-xp 5563  df-cnv 5565  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-sup 8908  df-wlim 33102
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator