MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elwspths2on Structured version   Visualization version   GIF version

Theorem elwspths2on 26847
Description: A simple path of length 2 between two vertices (in a graph) as length 3 string. (Contributed by Alexander van der Vekens, 9-Mar-2018.) (Revised by AV, 12-May-2021.)
Hypothesis
Ref Expression
elwwlks2on.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
elwspths2on ((𝐺 ∈ UPGraph ∧ 𝐴𝑉𝐶𝑉) → (𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ ∃𝑏𝑉 (𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶))))
Distinct variable groups:   𝐴,𝑏   𝐶,𝑏   𝐺,𝑏   𝑉,𝑏   𝑊,𝑏

Proof of Theorem elwspths2on
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 elwwlks2on.v . . . . . 6 𝑉 = (Vtx‘𝐺)
21wspthnon 26737 . . . . 5 ((𝐴𝑉𝐶𝑉) → (𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑊)))
32biimpd 219 . . . 4 ((𝐴𝑉𝐶𝑉) → (𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑊)))
433adant1 1078 . . 3 ((𝐺 ∈ UPGraph ∧ 𝐴𝑉𝐶𝑉) → (𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑊)))
51elwwlks2on 26846 . . . . . 6 ((𝐺 ∈ UPGraph ∧ 𝐴𝑉𝐶𝑉) → (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ∃𝑏𝑉 (𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ∃𝑓(𝑓(Walks‘𝐺)𝑊 ∧ (#‘𝑓) = 2))))
6 simpl 473 . . . . . . . . . . . . 13 ((𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ 𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)) → 𝑊 = ⟨“𝐴𝑏𝐶”⟩)
7 eleq1 2688 . . . . . . . . . . . . . 14 (𝑊 = ⟨“𝐴𝑏𝐶”⟩ → (𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)))
87biimpa 501 . . . . . . . . . . . . 13 ((𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ 𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)) → ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶))
96, 8jca 554 . . . . . . . . . . . 12 ((𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ 𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)) → (𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)))
109ex 450 . . . . . . . . . . 11 (𝑊 = ⟨“𝐴𝑏𝐶”⟩ → (𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → (𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶))))
1110adantr 481 . . . . . . . . . 10 ((𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ∃𝑓(𝑓(Walks‘𝐺)𝑊 ∧ (#‘𝑓) = 2)) → (𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → (𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶))))
1211com12 32 . . . . . . . . 9 (𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → ((𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ∃𝑓(𝑓(Walks‘𝐺)𝑊 ∧ (#‘𝑓) = 2)) → (𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶))))
1312reximdv 3015 . . . . . . . 8 (𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → (∃𝑏𝑉 (𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ∃𝑓(𝑓(Walks‘𝐺)𝑊 ∧ (#‘𝑓) = 2)) → ∃𝑏𝑉 (𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶))))
1413a1i13 27 . . . . . . 7 ((𝐺 ∈ UPGraph ∧ 𝐴𝑉𝐶𝑉) → (𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → (∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑊 → (∃𝑏𝑉 (𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ∃𝑓(𝑓(Walks‘𝐺)𝑊 ∧ (#‘𝑓) = 2)) → ∃𝑏𝑉 (𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶))))))
1514com24 95 . . . . . 6 ((𝐺 ∈ UPGraph ∧ 𝐴𝑉𝐶𝑉) → (∃𝑏𝑉 (𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ∃𝑓(𝑓(Walks‘𝐺)𝑊 ∧ (#‘𝑓) = 2)) → (∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑊 → (𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → ∃𝑏𝑉 (𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶))))))
165, 15sylbid 230 . . . . 5 ((𝐺 ∈ UPGraph ∧ 𝐴𝑉𝐶𝑉) → (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → (∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑊 → (𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → ∃𝑏𝑉 (𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶))))))
1716impd 447 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝐴𝑉𝐶𝑉) → ((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑊) → (𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → ∃𝑏𝑉 (𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)))))
1817com23 86 . . 3 ((𝐺 ∈ UPGraph ∧ 𝐴𝑉𝐶𝑉) → (𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → ((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑊) → ∃𝑏𝑉 (𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)))))
194, 18mpdd 43 . 2 ((𝐺 ∈ UPGraph ∧ 𝐴𝑉𝐶𝑉) → (𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) → ∃𝑏𝑉 (𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶))))
207biimpar 502 . . . 4 ((𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)) → 𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶))
2120a1i 11 . . 3 (((𝐺 ∈ UPGraph ∧ 𝐴𝑉𝐶𝑉) ∧ 𝑏𝑉) → ((𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)) → 𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)))
2221rexlimdva 3029 . 2 ((𝐺 ∈ UPGraph ∧ 𝐴𝑉𝐶𝑉) → (∃𝑏𝑉 (𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)) → 𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶)))
2319, 22impbid 202 1 ((𝐺 ∈ UPGraph ∧ 𝐴𝑉𝐶𝑉) → (𝑊 ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶) ↔ ∃𝑏𝑉 (𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WSPathsNOn 𝐺)𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1482  wex 1703  wcel 1989  wrex 2912   class class class wbr 4651  cfv 5886  (class class class)co 6647  2c2 11067  #chash 13112  ⟨“cs3 13581  Vtxcvtx 25868   UPGraph cupgr 25969  Walkscwlks 26486  SPathsOncspthson 26605   WWalksNOn cwwlksnon 26713   WSPathsNOn cwwspthsnon 26715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-rep 4769  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946  ax-ac2 9282  ax-cnex 9989  ax-resscn 9990  ax-1cn 9991  ax-icn 9992  ax-addcl 9993  ax-addrcl 9994  ax-mulcl 9995  ax-mulrcl 9996  ax-mulcom 9997  ax-addass 9998  ax-mulass 9999  ax-distr 10000  ax-i2m1 10001  ax-1ne0 10002  ax-1rid 10003  ax-rnegex 10004  ax-rrecex 10005  ax-cnre 10006  ax-pre-lttri 10007  ax-pre-lttrn 10008  ax-pre-ltadd 10009  ax-pre-mulgt0 10010
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-nel 2897  df-ral 2916  df-rex 2917  df-reu 2918  df-rmo 2919  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-pss 3588  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-tp 4180  df-op 4182  df-uni 4435  df-int 4474  df-iun 4520  df-br 4652  df-opab 4711  df-mpt 4728  df-tr 4751  df-id 5022  df-eprel 5027  df-po 5033  df-so 5034  df-fr 5071  df-se 5072  df-we 5073  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-pred 5678  df-ord 5724  df-on 5725  df-lim 5726  df-suc 5727  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-isom 5895  df-riota 6608  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-om 7063  df-1st 7165  df-2nd 7166  df-wrecs 7404  df-recs 7465  df-rdg 7503  df-1o 7557  df-2o 7558  df-oadd 7561  df-er 7739  df-map 7856  df-pm 7857  df-en 7953  df-dom 7954  df-sdom 7955  df-fin 7956  df-card 8762  df-ac 8936  df-cda 8987  df-pnf 10073  df-mnf 10074  df-xr 10075  df-ltxr 10076  df-le 10077  df-sub 10265  df-neg 10266  df-nn 11018  df-2 11076  df-3 11077  df-n0 11290  df-xnn0 11361  df-z 11375  df-uz 11685  df-fz 12324  df-fzo 12462  df-hash 13113  df-word 13294  df-concat 13296  df-s1 13297  df-s2 13587  df-s3 13588  df-edg 25934  df-uhgr 25947  df-upgr 25971  df-wlks 26489  df-wwlks 26716  df-wwlksn 26717  df-wwlksnon 26718  df-wspthsnon 26720
This theorem is referenced by:  usgr2wspthon  26852  elwspths2spth  26856
  Copyright terms: Public domain W3C validator