MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elxnn0 Structured version   Visualization version   GIF version

Theorem elxnn0 11310
Description: An extended nonnegative integer is either a standard nonnegative integer or positive infinity. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
elxnn0 (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0𝐴 = +∞))

Proof of Theorem elxnn0
StepHypRef Expression
1 df-xnn0 11309 . . 3 0* = (ℕ0 ∪ {+∞})
21eleq2i 2696 . 2 (𝐴 ∈ ℕ0*𝐴 ∈ (ℕ0 ∪ {+∞}))
3 elun 3736 . 2 (𝐴 ∈ (ℕ0 ∪ {+∞}) ↔ (𝐴 ∈ ℕ0𝐴 ∈ {+∞}))
4 pnfex 10038 . . . 4 +∞ ∈ V
54elsn2 4187 . . 3 (𝐴 ∈ {+∞} ↔ 𝐴 = +∞)
65orbi2i 541 . 2 ((𝐴 ∈ ℕ0𝐴 ∈ {+∞}) ↔ (𝐴 ∈ ℕ0𝐴 = +∞))
72, 3, 63bitri 286 1 (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0𝐴 = +∞))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wo 383   = wceq 1480  wcel 1992  cun 3558  {csn 4153  +∞cpnf 10016  0cn0 11237  0*cxnn0 11308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-pow 4808  ax-un 6903  ax-cnex 9937
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-rex 2918  df-v 3193  df-un 3565  df-in 3567  df-ss 3574  df-pw 4137  df-sn 4154  df-pr 4156  df-uni 4408  df-pnf 10021  df-xr 10023  df-xnn0 11309
This theorem is referenced by:  xnn0xr  11313  pnf0xnn0  11315  xnn0nemnf  11319  xnn0nnn0pnf  11321  xnn0n0n1ge2b  11909  xnn0ge0  11911  xnn0xadd0  12017  xnn0xrge0  12264  tayl0  24015
  Copyright terms: Public domain W3C validator