MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elxp Structured version   Visualization version   GIF version

Theorem elxp 5101
Description: Membership in a Cartesian product. (Contributed by NM, 4-Jul-1994.)
Assertion
Ref Expression
elxp (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦

Proof of Theorem elxp
StepHypRef Expression
1 df-xp 5090 . . 3 (𝐵 × 𝐶) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐶)}
21eleq2i 2690 . 2 (𝐴 ∈ (𝐵 × 𝐶) ↔ 𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐶)})
3 elopab 4953 . 2 (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐶)} ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)))
42, 3bitri 264 1 (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1480  wex 1701  wcel 1987  cop 4161  {copab 4682   × cxp 5082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pr 4877
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-v 3192  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-sn 4156  df-pr 4158  df-op 4162  df-opab 4684  df-xp 5090
This theorem is referenced by:  elxp2  5102  elxp2OLD  5103  0nelxp  5113  0nelxpOLD  5114  0nelelxp  5115  rabxp  5124  elxp3  5140  elvv  5148  elvvv  5149  0xp  5170  xpdifid  5531  dfco2a  5604  elsnxp  5646  elsnxpOLD  5647  tpres  6431  elxp4  7072  elxp5  7073  opabex3d  7106  opabex3  7107  xp1st  7158  xp2nd  7159  poxp  7249  soxp  7250  xpsnen  8004  xpcomco  8010  xpassen  8014  dfac5lem1  8906  dfac5lem4  8909  axdc4lem  9237  fsum2dlem  14448  fprod2dlem  14654  numclwlk1lem2fo  27117  dfres3  31410  elima4  31434  brcart  31734  brimg  31739  dibelval3  35955
  Copyright terms: Public domain W3C validator