MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elxp6 Structured version   Visualization version   GIF version

Theorem elxp6 7714
Description: Membership in a Cartesian product. This version requires no quantifiers or dummy variables. See also elxp4 7615. (Contributed by NM, 9-Oct-2004.)
Assertion
Ref Expression
elxp6 (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩ ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶)))

Proof of Theorem elxp6
StepHypRef Expression
1 elxp4 7615 . 2 (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = ⟨ dom {𝐴}, ran {𝐴}⟩ ∧ ( dom {𝐴} ∈ 𝐵 ran {𝐴} ∈ 𝐶)))
2 1stval 7682 . . . . 5 (1st𝐴) = dom {𝐴}
3 2ndval 7683 . . . . 5 (2nd𝐴) = ran {𝐴}
42, 3opeq12i 4802 . . . 4 ⟨(1st𝐴), (2nd𝐴)⟩ = ⟨ dom {𝐴}, ran {𝐴}⟩
54eqeq2i 2834 . . 3 (𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩ ↔ 𝐴 = ⟨ dom {𝐴}, ran {𝐴}⟩)
62eleq1i 2903 . . . 4 ((1st𝐴) ∈ 𝐵 dom {𝐴} ∈ 𝐵)
73eleq1i 2903 . . . 4 ((2nd𝐴) ∈ 𝐶 ran {𝐴} ∈ 𝐶)
86, 7anbi12i 626 . . 3 (((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶) ↔ ( dom {𝐴} ∈ 𝐵 ran {𝐴} ∈ 𝐶))
95, 8anbi12i 626 . 2 ((𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩ ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶)) ↔ (𝐴 = ⟨ dom {𝐴}, ran {𝐴}⟩ ∧ ( dom {𝐴} ∈ 𝐵 ran {𝐴} ∈ 𝐶)))
101, 9bitr4i 279 1 (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩ ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wb 207  wa 396   = wceq 1528  wcel 2105  {csn 4559  cop 4565   cuni 4832   × cxp 5547  dom cdm 5549  ran crn 5550  cfv 6349  1st c1st 7678  2nd c2nd 7679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3497  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4466  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4833  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-iota 6308  df-fun 6351  df-fv 6357  df-1st 7680  df-2nd 7681
This theorem is referenced by:  elxp7  7715  eqopi  7716  1st2nd2  7719  eldju2ndl  9342  eldju2ndr  9343  r0weon  9427  qredeu  15992  qnumdencl  16069  setsstruct2  16511  tx1cn  22147  tx2cn  22148  txhaus  22185  psmetxrge0  22852  xppreima  30323  ofpreima2  30340  smatrcl  30961  1stmbfm  31418  2ndmbfm  31419  oddpwdcv  31513  prproropf1olem0  43511
  Copyright terms: Public domain W3C validator