MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elz2 Structured version   Visualization version   GIF version

Theorem elz2 12002
Description: Membership in the set of integers. Commonly used in constructions of the integers as equivalence classes under subtraction of the positive integers. (Contributed by Mario Carneiro, 16-May-2014.)
Assertion
Ref Expression
elz2 (𝑁 ∈ ℤ ↔ ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑁 = (𝑥𝑦))
Distinct variable group:   𝑥,𝑦,𝑁

Proof of Theorem elz2
StepHypRef Expression
1 elznn0 11999 . 2 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)))
2 nn0p1nn 11939 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
32adantl 484 . . . . 5 ((𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ ℕ)
4 1nn 11651 . . . . . 6 1 ∈ ℕ
54a1i 11 . . . . 5 ((𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → 1 ∈ ℕ)
6 recn 10629 . . . . . . . 8 (𝑁 ∈ ℝ → 𝑁 ∈ ℂ)
76adantr 483 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℂ)
8 ax-1cn 10597 . . . . . . 7 1 ∈ ℂ
9 pncan 10894 . . . . . . 7 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 1) = 𝑁)
107, 8, 9sylancl 588 . . . . . 6 ((𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → ((𝑁 + 1) − 1) = 𝑁)
1110eqcomd 2829 . . . . 5 ((𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → 𝑁 = ((𝑁 + 1) − 1))
12 rspceov 7205 . . . . 5 (((𝑁 + 1) ∈ ℕ ∧ 1 ∈ ℕ ∧ 𝑁 = ((𝑁 + 1) − 1)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑁 = (𝑥𝑦))
133, 5, 11, 12syl3anc 1367 . . . 4 ((𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑁 = (𝑥𝑦))
144a1i 11 . . . . 5 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0) → 1 ∈ ℕ)
156adantr 483 . . . . . . 7 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0) → 𝑁 ∈ ℂ)
16 negsub 10936 . . . . . . 7 ((1 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (1 + -𝑁) = (1 − 𝑁))
178, 15, 16sylancr 589 . . . . . 6 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0) → (1 + -𝑁) = (1 − 𝑁))
18 simpr 487 . . . . . . 7 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0) → -𝑁 ∈ ℕ0)
19 nnnn0addcl 11930 . . . . . . 7 ((1 ∈ ℕ ∧ -𝑁 ∈ ℕ0) → (1 + -𝑁) ∈ ℕ)
204, 18, 19sylancr 589 . . . . . 6 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0) → (1 + -𝑁) ∈ ℕ)
2117, 20eqeltrrd 2916 . . . . 5 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0) → (1 − 𝑁) ∈ ℕ)
22 nncan 10917 . . . . . . 7 ((1 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (1 − (1 − 𝑁)) = 𝑁)
238, 15, 22sylancr 589 . . . . . 6 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0) → (1 − (1 − 𝑁)) = 𝑁)
2423eqcomd 2829 . . . . 5 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0) → 𝑁 = (1 − (1 − 𝑁)))
25 rspceov 7205 . . . . 5 ((1 ∈ ℕ ∧ (1 − 𝑁) ∈ ℕ ∧ 𝑁 = (1 − (1 − 𝑁))) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑁 = (𝑥𝑦))
2614, 21, 24, 25syl3anc 1367 . . . 4 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑁 = (𝑥𝑦))
2713, 26jaodan 954 . . 3 ((𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑁 = (𝑥𝑦))
28 nnre 11647 . . . . . . 7 (𝑥 ∈ ℕ → 𝑥 ∈ ℝ)
29 nnre 11647 . . . . . . 7 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
30 resubcl 10952 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥𝑦) ∈ ℝ)
3128, 29, 30syl2an 597 . . . . . 6 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑥𝑦) ∈ ℝ)
32 letric 10742 . . . . . . . 8 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑦𝑥𝑥𝑦))
3329, 28, 32syl2anr 598 . . . . . . 7 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑦𝑥𝑥𝑦))
34 nnnn0 11907 . . . . . . . . 9 (𝑦 ∈ ℕ → 𝑦 ∈ ℕ0)
35 nnnn0 11907 . . . . . . . . 9 (𝑥 ∈ ℕ → 𝑥 ∈ ℕ0)
36 nn0sub 11950 . . . . . . . . 9 ((𝑦 ∈ ℕ0𝑥 ∈ ℕ0) → (𝑦𝑥 ↔ (𝑥𝑦) ∈ ℕ0))
3734, 35, 36syl2anr 598 . . . . . . . 8 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑦𝑥 ↔ (𝑥𝑦) ∈ ℕ0))
38 nn0sub 11950 . . . . . . . . . 10 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑥𝑦 ↔ (𝑦𝑥) ∈ ℕ0))
3935, 34, 38syl2an 597 . . . . . . . . 9 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑥𝑦 ↔ (𝑦𝑥) ∈ ℕ0))
40 nncn 11648 . . . . . . . . . . 11 (𝑥 ∈ ℕ → 𝑥 ∈ ℂ)
41 nncn 11648 . . . . . . . . . . 11 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
42 negsubdi2 10947 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → -(𝑥𝑦) = (𝑦𝑥))
4340, 41, 42syl2an 597 . . . . . . . . . 10 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → -(𝑥𝑦) = (𝑦𝑥))
4443eleq1d 2899 . . . . . . . . 9 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (-(𝑥𝑦) ∈ ℕ0 ↔ (𝑦𝑥) ∈ ℕ0))
4539, 44bitr4d 284 . . . . . . . 8 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑥𝑦 ↔ -(𝑥𝑦) ∈ ℕ0))
4637, 45orbi12d 915 . . . . . . 7 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝑦𝑥𝑥𝑦) ↔ ((𝑥𝑦) ∈ ℕ0 ∨ -(𝑥𝑦) ∈ ℕ0)))
4733, 46mpbid 234 . . . . . 6 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝑥𝑦) ∈ ℕ0 ∨ -(𝑥𝑦) ∈ ℕ0))
4831, 47jca 514 . . . . 5 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝑥𝑦) ∈ ℝ ∧ ((𝑥𝑦) ∈ ℕ0 ∨ -(𝑥𝑦) ∈ ℕ0)))
49 eleq1 2902 . . . . . 6 (𝑁 = (𝑥𝑦) → (𝑁 ∈ ℝ ↔ (𝑥𝑦) ∈ ℝ))
50 eleq1 2902 . . . . . . 7 (𝑁 = (𝑥𝑦) → (𝑁 ∈ ℕ0 ↔ (𝑥𝑦) ∈ ℕ0))
51 negeq 10880 . . . . . . . 8 (𝑁 = (𝑥𝑦) → -𝑁 = -(𝑥𝑦))
5251eleq1d 2899 . . . . . . 7 (𝑁 = (𝑥𝑦) → (-𝑁 ∈ ℕ0 ↔ -(𝑥𝑦) ∈ ℕ0))
5350, 52orbi12d 915 . . . . . 6 (𝑁 = (𝑥𝑦) → ((𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0) ↔ ((𝑥𝑦) ∈ ℕ0 ∨ -(𝑥𝑦) ∈ ℕ0)))
5449, 53anbi12d 632 . . . . 5 (𝑁 = (𝑥𝑦) → ((𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)) ↔ ((𝑥𝑦) ∈ ℝ ∧ ((𝑥𝑦) ∈ ℕ0 ∨ -(𝑥𝑦) ∈ ℕ0))))
5548, 54syl5ibrcom 249 . . . 4 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑁 = (𝑥𝑦) → (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))))
5655rexlimivv 3294 . . 3 (∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑁 = (𝑥𝑦) → (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)))
5727, 56impbii 211 . 2 ((𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)) ↔ ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑁 = (𝑥𝑦))
581, 57bitri 277 1 (𝑁 ∈ ℤ ↔ ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑁 = (𝑥𝑦))
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398  wo 843   = wceq 1537  wcel 2114  wrex 3141   class class class wbr 5068  (class class class)co 7158  cc 10537  cr 10538  1c1 10540   + caddc 10542  cle 10678  cmin 10872  -cneg 10873  cn 11640  0cn0 11900  cz 11984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-n0 11901  df-z 11985
This theorem is referenced by:  dfz2  12003  zaddcl  12025
  Copyright terms: Public domain W3C validator