MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  emcllem2 Structured version   Visualization version   GIF version

Theorem emcllem2 24768
Description: Lemma for emcl 24774. 𝐹 is increasing, and 𝐺 is decreasing. (Contributed by Mario Carneiro, 11-Jul-2014.)
Hypotheses
Ref Expression
emcl.1 𝐹 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛)))
emcl.2 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))))
Assertion
Ref Expression
emcllem2 (𝑁 ∈ ℕ → ((𝐹‘(𝑁 + 1)) ≤ (𝐹𝑁) ∧ (𝐺𝑁) ≤ (𝐺‘(𝑁 + 1))))
Distinct variable group:   𝑚,𝑛,𝑁
Allowed substitution hints:   𝐹(𝑚,𝑛)   𝐺(𝑚,𝑛)

Proof of Theorem emcllem2
StepHypRef Expression
1 peano2nn 11070 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
21nnrecred 11104 . . . . . 6 (𝑁 ∈ ℕ → (1 / (𝑁 + 1)) ∈ ℝ)
31nnrpd 11908 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℝ+)
43relogcld 24414 . . . . . . 7 (𝑁 ∈ ℕ → (log‘(𝑁 + 1)) ∈ ℝ)
5 nnrp 11880 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
65relogcld 24414 . . . . . . 7 (𝑁 ∈ ℕ → (log‘𝑁) ∈ ℝ)
74, 6resubcld 10496 . . . . . 6 (𝑁 ∈ ℕ → ((log‘(𝑁 + 1)) − (log‘𝑁)) ∈ ℝ)
8 fzfid 12812 . . . . . . 7 (𝑁 ∈ ℕ → (1...𝑁) ∈ Fin)
9 elfznn 12408 . . . . . . . . 9 (𝑚 ∈ (1...𝑁) → 𝑚 ∈ ℕ)
109adantl 481 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑚 ∈ (1...𝑁)) → 𝑚 ∈ ℕ)
1110nnrecred 11104 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑚 ∈ (1...𝑁)) → (1 / 𝑚) ∈ ℝ)
128, 11fsumrecl 14509 . . . . . 6 (𝑁 ∈ ℕ → Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) ∈ ℝ)
133rpreccld 11920 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (1 / (𝑁 + 1)) ∈ ℝ+)
1413rpge0d 11914 . . . . . . . . . 10 (𝑁 ∈ ℕ → 0 ≤ (1 / (𝑁 + 1)))
15 1div1e1 10755 . . . . . . . . . . . 12 (1 / 1) = 1
16 1re 10077 . . . . . . . . . . . . . 14 1 ∈ ℝ
17 ltaddrp 11905 . . . . . . . . . . . . . 14 ((1 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → 1 < (1 + 𝑁))
1816, 5, 17sylancr 696 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 1 < (1 + 𝑁))
19 ax-1cn 10032 . . . . . . . . . . . . . 14 1 ∈ ℂ
20 nncn 11066 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
21 addcom 10260 . . . . . . . . . . . . . 14 ((1 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (1 + 𝑁) = (𝑁 + 1))
2219, 20, 21sylancr 696 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (1 + 𝑁) = (𝑁 + 1))
2318, 22breqtrd 4711 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 1 < (𝑁 + 1))
2415, 23syl5eqbr 4720 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (1 / 1) < (𝑁 + 1))
251nnred 11073 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℝ)
261nngt0d 11102 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 0 < (𝑁 + 1))
27 0lt1 10588 . . . . . . . . . . . . 13 0 < 1
28 ltrec1 10948 . . . . . . . . . . . . 13 (((1 ∈ ℝ ∧ 0 < 1) ∧ ((𝑁 + 1) ∈ ℝ ∧ 0 < (𝑁 + 1))) → ((1 / 1) < (𝑁 + 1) ↔ (1 / (𝑁 + 1)) < 1))
2916, 27, 28mpanl12 718 . . . . . . . . . . . 12 (((𝑁 + 1) ∈ ℝ ∧ 0 < (𝑁 + 1)) → ((1 / 1) < (𝑁 + 1) ↔ (1 / (𝑁 + 1)) < 1))
3025, 26, 29syl2anc 694 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((1 / 1) < (𝑁 + 1) ↔ (1 / (𝑁 + 1)) < 1))
3124, 30mpbid 222 . . . . . . . . . 10 (𝑁 ∈ ℕ → (1 / (𝑁 + 1)) < 1)
322, 14, 31eflegeo 14895 . . . . . . . . 9 (𝑁 ∈ ℕ → (exp‘(1 / (𝑁 + 1))) ≤ (1 / (1 − (1 / (𝑁 + 1)))))
3325recnd 10106 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℂ)
34 nnne0 11091 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
351nnne0d 11103 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (𝑁 + 1) ≠ 0)
3620, 33, 34, 35recdivd 10856 . . . . . . . . . 10 (𝑁 ∈ ℕ → (1 / (𝑁 / (𝑁 + 1))) = ((𝑁 + 1) / 𝑁))
37 1cnd 10094 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 1 ∈ ℂ)
3833, 37, 33, 35divsubdird 10878 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (((𝑁 + 1) − 1) / (𝑁 + 1)) = (((𝑁 + 1) / (𝑁 + 1)) − (1 / (𝑁 + 1))))
39 pncan 10325 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 1) = 𝑁)
4020, 19, 39sylancl 695 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → ((𝑁 + 1) − 1) = 𝑁)
4140oveq1d 6705 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (((𝑁 + 1) − 1) / (𝑁 + 1)) = (𝑁 / (𝑁 + 1)))
4233, 35dividd 10837 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → ((𝑁 + 1) / (𝑁 + 1)) = 1)
4342oveq1d 6705 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (((𝑁 + 1) / (𝑁 + 1)) − (1 / (𝑁 + 1))) = (1 − (1 / (𝑁 + 1))))
4438, 41, 433eqtr3rd 2694 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (1 − (1 / (𝑁 + 1))) = (𝑁 / (𝑁 + 1)))
4544oveq2d 6706 . . . . . . . . . 10 (𝑁 ∈ ℕ → (1 / (1 − (1 / (𝑁 + 1)))) = (1 / (𝑁 / (𝑁 + 1))))
463, 5rpdivcld 11927 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((𝑁 + 1) / 𝑁) ∈ ℝ+)
4746reeflogd 24415 . . . . . . . . . 10 (𝑁 ∈ ℕ → (exp‘(log‘((𝑁 + 1) / 𝑁))) = ((𝑁 + 1) / 𝑁))
4836, 45, 473eqtr4d 2695 . . . . . . . . 9 (𝑁 ∈ ℕ → (1 / (1 − (1 / (𝑁 + 1)))) = (exp‘(log‘((𝑁 + 1) / 𝑁))))
4932, 48breqtrd 4711 . . . . . . . 8 (𝑁 ∈ ℕ → (exp‘(1 / (𝑁 + 1))) ≤ (exp‘(log‘((𝑁 + 1) / 𝑁))))
503, 5relogdivd 24417 . . . . . . . . . 10 (𝑁 ∈ ℕ → (log‘((𝑁 + 1) / 𝑁)) = ((log‘(𝑁 + 1)) − (log‘𝑁)))
5150, 7eqeltrd 2730 . . . . . . . . 9 (𝑁 ∈ ℕ → (log‘((𝑁 + 1) / 𝑁)) ∈ ℝ)
52 efle 14892 . . . . . . . . 9 (((1 / (𝑁 + 1)) ∈ ℝ ∧ (log‘((𝑁 + 1) / 𝑁)) ∈ ℝ) → ((1 / (𝑁 + 1)) ≤ (log‘((𝑁 + 1) / 𝑁)) ↔ (exp‘(1 / (𝑁 + 1))) ≤ (exp‘(log‘((𝑁 + 1) / 𝑁)))))
532, 51, 52syl2anc 694 . . . . . . . 8 (𝑁 ∈ ℕ → ((1 / (𝑁 + 1)) ≤ (log‘((𝑁 + 1) / 𝑁)) ↔ (exp‘(1 / (𝑁 + 1))) ≤ (exp‘(log‘((𝑁 + 1) / 𝑁)))))
5449, 53mpbird 247 . . . . . . 7 (𝑁 ∈ ℕ → (1 / (𝑁 + 1)) ≤ (log‘((𝑁 + 1) / 𝑁)))
5554, 50breqtrd 4711 . . . . . 6 (𝑁 ∈ ℕ → (1 / (𝑁 + 1)) ≤ ((log‘(𝑁 + 1)) − (log‘𝑁)))
562, 7, 12, 55leadd2dd 10680 . . . . 5 (𝑁 ∈ ℕ → (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) + (1 / (𝑁 + 1))) ≤ (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) + ((log‘(𝑁 + 1)) − (log‘𝑁))))
57 id 22 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ)
58 nnuz 11761 . . . . . . 7 ℕ = (ℤ‘1)
5957, 58syl6eleq 2740 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ (ℤ‘1))
60 elfznn 12408 . . . . . . . . 9 (𝑚 ∈ (1...(𝑁 + 1)) → 𝑚 ∈ ℕ)
6160adantl 481 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑚 ∈ (1...(𝑁 + 1))) → 𝑚 ∈ ℕ)
6261nnrecred 11104 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑚 ∈ (1...(𝑁 + 1))) → (1 / 𝑚) ∈ ℝ)
6362recnd 10106 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑚 ∈ (1...(𝑁 + 1))) → (1 / 𝑚) ∈ ℂ)
64 oveq2 6698 . . . . . 6 (𝑚 = (𝑁 + 1) → (1 / 𝑚) = (1 / (𝑁 + 1)))
6559, 63, 64fsump1 14531 . . . . 5 (𝑁 ∈ ℕ → Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) = (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) + (1 / (𝑁 + 1))))
664recnd 10106 . . . . . 6 (𝑁 ∈ ℕ → (log‘(𝑁 + 1)) ∈ ℂ)
6712recnd 10106 . . . . . 6 (𝑁 ∈ ℕ → Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) ∈ ℂ)
686recnd 10106 . . . . . 6 (𝑁 ∈ ℕ → (log‘𝑁) ∈ ℂ)
6966, 67, 68addsub12d 10453 . . . . 5 (𝑁 ∈ ℕ → ((log‘(𝑁 + 1)) + (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘𝑁))) = (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) + ((log‘(𝑁 + 1)) − (log‘𝑁))))
7056, 65, 693brtr4d 4717 . . . 4 (𝑁 ∈ ℕ → Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) ≤ ((log‘(𝑁 + 1)) + (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘𝑁))))
71 fzfid 12812 . . . . . 6 (𝑁 ∈ ℕ → (1...(𝑁 + 1)) ∈ Fin)
7271, 62fsumrecl 14509 . . . . 5 (𝑁 ∈ ℕ → Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) ∈ ℝ)
7312, 6resubcld 10496 . . . . 5 (𝑁 ∈ ℕ → (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘𝑁)) ∈ ℝ)
7472, 4, 73lesubadd2d 10664 . . . 4 (𝑁 ∈ ℕ → ((Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) − (log‘(𝑁 + 1))) ≤ (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘𝑁)) ↔ Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) ≤ ((log‘(𝑁 + 1)) + (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘𝑁)))))
7570, 74mpbird 247 . . 3 (𝑁 ∈ ℕ → (Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) − (log‘(𝑁 + 1))) ≤ (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘𝑁)))
76 oveq2 6698 . . . . . . 7 (𝑛 = (𝑁 + 1) → (1...𝑛) = (1...(𝑁 + 1)))
7776sumeq1d 14475 . . . . . 6 (𝑛 = (𝑁 + 1) → Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) = Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚))
78 fveq2 6229 . . . . . 6 (𝑛 = (𝑁 + 1) → (log‘𝑛) = (log‘(𝑁 + 1)))
7977, 78oveq12d 6708 . . . . 5 (𝑛 = (𝑁 + 1) → (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛)) = (Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) − (log‘(𝑁 + 1))))
80 emcl.1 . . . . 5 𝐹 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛)))
81 ovex 6718 . . . . 5 𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) − (log‘(𝑁 + 1))) ∈ V
8279, 80, 81fvmpt 6321 . . . 4 ((𝑁 + 1) ∈ ℕ → (𝐹‘(𝑁 + 1)) = (Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) − (log‘(𝑁 + 1))))
831, 82syl 17 . . 3 (𝑁 ∈ ℕ → (𝐹‘(𝑁 + 1)) = (Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) − (log‘(𝑁 + 1))))
84 oveq2 6698 . . . . . 6 (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁))
8584sumeq1d 14475 . . . . 5 (𝑛 = 𝑁 → Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) = Σ𝑚 ∈ (1...𝑁)(1 / 𝑚))
86 fveq2 6229 . . . . 5 (𝑛 = 𝑁 → (log‘𝑛) = (log‘𝑁))
8785, 86oveq12d 6708 . . . 4 (𝑛 = 𝑁 → (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛)) = (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘𝑁)))
88 ovex 6718 . . . 4 𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘𝑁)) ∈ V
8987, 80, 88fvmpt 6321 . . 3 (𝑁 ∈ ℕ → (𝐹𝑁) = (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘𝑁)))
9075, 83, 893brtr4d 4717 . 2 (𝑁 ∈ ℕ → (𝐹‘(𝑁 + 1)) ≤ (𝐹𝑁))
91 peano2nn 11070 . . . . . . . . . 10 ((𝑁 + 1) ∈ ℕ → ((𝑁 + 1) + 1) ∈ ℕ)
921, 91syl 17 . . . . . . . . 9 (𝑁 ∈ ℕ → ((𝑁 + 1) + 1) ∈ ℕ)
9392nnrpd 11908 . . . . . . . 8 (𝑁 ∈ ℕ → ((𝑁 + 1) + 1) ∈ ℝ+)
9493relogcld 24414 . . . . . . 7 (𝑁 ∈ ℕ → (log‘((𝑁 + 1) + 1)) ∈ ℝ)
9594, 4resubcld 10496 . . . . . 6 (𝑁 ∈ ℕ → ((log‘((𝑁 + 1) + 1)) − (log‘(𝑁 + 1))) ∈ ℝ)
96 logdifbnd 24765 . . . . . . 7 ((𝑁 + 1) ∈ ℝ+ → ((log‘((𝑁 + 1) + 1)) − (log‘(𝑁 + 1))) ≤ (1 / (𝑁 + 1)))
973, 96syl 17 . . . . . 6 (𝑁 ∈ ℕ → ((log‘((𝑁 + 1) + 1)) − (log‘(𝑁 + 1))) ≤ (1 / (𝑁 + 1)))
9895, 2, 12, 97leadd2dd 10680 . . . . 5 (𝑁 ∈ ℕ → (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) + ((log‘((𝑁 + 1) + 1)) − (log‘(𝑁 + 1)))) ≤ (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) + (1 / (𝑁 + 1))))
9994recnd 10106 . . . . . 6 (𝑁 ∈ ℕ → (log‘((𝑁 + 1) + 1)) ∈ ℂ)
10067, 66, 99subadd23d 10452 . . . . 5 (𝑁 ∈ ℕ → ((Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) + (log‘((𝑁 + 1) + 1))) = (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) + ((log‘((𝑁 + 1) + 1)) − (log‘(𝑁 + 1)))))
10198, 100, 653brtr4d 4717 . . . 4 (𝑁 ∈ ℕ → ((Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) + (log‘((𝑁 + 1) + 1))) ≤ Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚))
10212, 4resubcld 10496 . . . . 5 (𝑁 ∈ ℕ → (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) ∈ ℝ)
103 leaddsub 10542 . . . . 5 (((Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) ∈ ℝ ∧ (log‘((𝑁 + 1) + 1)) ∈ ℝ ∧ Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) ∈ ℝ) → (((Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) + (log‘((𝑁 + 1) + 1))) ≤ Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) ↔ (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) ≤ (Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) − (log‘((𝑁 + 1) + 1)))))
104102, 94, 72, 103syl3anc 1366 . . . 4 (𝑁 ∈ ℕ → (((Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) + (log‘((𝑁 + 1) + 1))) ≤ Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) ↔ (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) ≤ (Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) − (log‘((𝑁 + 1) + 1)))))
105101, 104mpbid 222 . . 3 (𝑁 ∈ ℕ → (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) ≤ (Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) − (log‘((𝑁 + 1) + 1))))
106 oveq1 6697 . . . . . 6 (𝑛 = 𝑁 → (𝑛 + 1) = (𝑁 + 1))
107106fveq2d 6233 . . . . 5 (𝑛 = 𝑁 → (log‘(𝑛 + 1)) = (log‘(𝑁 + 1)))
10885, 107oveq12d 6708 . . . 4 (𝑛 = 𝑁 → (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))) = (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))))
109 emcl.2 . . . 4 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))))
110 ovex 6718 . . . 4 𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) ∈ V
111108, 109, 110fvmpt 6321 . . 3 (𝑁 ∈ ℕ → (𝐺𝑁) = (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))))
112 oveq1 6697 . . . . . . 7 (𝑛 = (𝑁 + 1) → (𝑛 + 1) = ((𝑁 + 1) + 1))
113112fveq2d 6233 . . . . . 6 (𝑛 = (𝑁 + 1) → (log‘(𝑛 + 1)) = (log‘((𝑁 + 1) + 1)))
11477, 113oveq12d 6708 . . . . 5 (𝑛 = (𝑁 + 1) → (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))) = (Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) − (log‘((𝑁 + 1) + 1))))
115 ovex 6718 . . . . 5 𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) − (log‘((𝑁 + 1) + 1))) ∈ V
116114, 109, 115fvmpt 6321 . . . 4 ((𝑁 + 1) ∈ ℕ → (𝐺‘(𝑁 + 1)) = (Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) − (log‘((𝑁 + 1) + 1))))
1171, 116syl 17 . . 3 (𝑁 ∈ ℕ → (𝐺‘(𝑁 + 1)) = (Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) − (log‘((𝑁 + 1) + 1))))
118105, 111, 1173brtr4d 4717 . 2 (𝑁 ∈ ℕ → (𝐺𝑁) ≤ (𝐺‘(𝑁 + 1)))
11990, 118jca 553 1 (𝑁 ∈ ℕ → ((𝐹‘(𝑁 + 1)) ≤ (𝐹𝑁) ∧ (𝐺𝑁) ≤ (𝐺‘(𝑁 + 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030   class class class wbr 4685  cmpt 4762  cfv 5926  (class class class)co 6690  cc 9972  cr 9973  0cc0 9974  1c1 9975   + caddc 9977   < clt 10112  cle 10113  cmin 10304   / cdiv 10722  cn 11058  cuz 11725  +crp 11870  ...cfz 12364  Σcsu 14460  expce 14836  logclog 24346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ioc 12218  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-fac 13101  df-bc 13130  df-hash 13158  df-shft 13851  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-limsup 14246  df-clim 14263  df-rlim 14264  df-sum 14461  df-ef 14842  df-sin 14844  df-cos 14845  df-pi 14847  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-pt 16152  df-prds 16155  df-xrs 16209  df-qtop 16214  df-imas 16215  df-xps 16217  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-mulg 17588  df-cntz 17796  df-cmn 18241  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-fbas 19791  df-fg 19792  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cld 20871  df-ntr 20872  df-cls 20873  df-nei 20950  df-lp 20988  df-perf 20989  df-cn 21079  df-cnp 21080  df-haus 21167  df-tx 21413  df-hmeo 21606  df-fil 21697  df-fm 21789  df-flim 21790  df-flf 21791  df-xms 22172  df-ms 22173  df-tms 22174  df-cncf 22728  df-limc 23675  df-dv 23676  df-log 24348
This theorem is referenced by:  emcllem6  24772  emcllem7  24773
  Copyright terms: Public domain W3C validator