MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  emcllem5 Structured version   Visualization version   GIF version

Theorem emcllem5 24626
Description: Lemma for emcl 24629. The partial sums of the series 𝑇, which is used in the definition df-em 24619, is in fact the same as 𝐺. (Contributed by Mario Carneiro, 11-Jul-2014.)
Hypotheses
Ref Expression
emcl.1 𝐹 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛)))
emcl.2 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))))
emcl.3 𝐻 = (𝑛 ∈ ℕ ↦ (log‘(1 + (1 / 𝑛))))
emcl.4 𝑇 = (𝑛 ∈ ℕ ↦ ((1 / 𝑛) − (log‘(1 + (1 / 𝑛)))))
Assertion
Ref Expression
emcllem5 𝐺 = seq1( + , 𝑇)
Distinct variable groups:   𝑚,𝐻   𝑚,𝑛,𝑇
Allowed substitution hints:   𝐹(𝑚,𝑛)   𝐺(𝑚,𝑛)   𝐻(𝑛)

Proof of Theorem emcllem5
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elfznn 12312 . . . . . . . . . . . . 13 (𝑚 ∈ (1...𝑛) → 𝑚 ∈ ℕ)
21adantl 482 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → 𝑚 ∈ ℕ)
32nncnd 10980 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → 𝑚 ∈ ℂ)
4 1cnd 10000 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → 1 ∈ ℂ)
52nnne0d 11009 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → 𝑚 ≠ 0)
63, 4, 3, 5divdird 10783 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → ((𝑚 + 1) / 𝑚) = ((𝑚 / 𝑚) + (1 / 𝑚)))
73, 5dividd 10743 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (𝑚 / 𝑚) = 1)
87oveq1d 6619 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → ((𝑚 / 𝑚) + (1 / 𝑚)) = (1 + (1 / 𝑚)))
96, 8eqtrd 2655 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → ((𝑚 + 1) / 𝑚) = (1 + (1 / 𝑚)))
109fveq2d 6152 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (log‘((𝑚 + 1) / 𝑚)) = (log‘(1 + (1 / 𝑚))))
11 peano2nn 10976 . . . . . . . . . . 11 (𝑚 ∈ ℕ → (𝑚 + 1) ∈ ℕ)
122, 11syl 17 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (𝑚 + 1) ∈ ℕ)
1312nnrpd 11814 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (𝑚 + 1) ∈ ℝ+)
142nnrpd 11814 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → 𝑚 ∈ ℝ+)
1513, 14relogdivd 24276 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (log‘((𝑚 + 1) / 𝑚)) = ((log‘(𝑚 + 1)) − (log‘𝑚)))
1610, 15eqtr3d 2657 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (log‘(1 + (1 / 𝑚))) = ((log‘(𝑚 + 1)) − (log‘𝑚)))
1716sumeq2dv 14367 . . . . . 6 (𝑛 ∈ ℕ → Σ𝑚 ∈ (1...𝑛)(log‘(1 + (1 / 𝑚))) = Σ𝑚 ∈ (1...𝑛)((log‘(𝑚 + 1)) − (log‘𝑚)))
18 fveq2 6148 . . . . . . 7 (𝑥 = 𝑚 → (log‘𝑥) = (log‘𝑚))
19 fveq2 6148 . . . . . . 7 (𝑥 = (𝑚 + 1) → (log‘𝑥) = (log‘(𝑚 + 1)))
20 fveq2 6148 . . . . . . 7 (𝑥 = 1 → (log‘𝑥) = (log‘1))
21 fveq2 6148 . . . . . . 7 (𝑥 = (𝑛 + 1) → (log‘𝑥) = (log‘(𝑛 + 1)))
22 nnz 11343 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
23 peano2nn 10976 . . . . . . . 8 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℕ)
24 nnuz 11667 . . . . . . . 8 ℕ = (ℤ‘1)
2523, 24syl6eleq 2708 . . . . . . 7 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ (ℤ‘1))
26 elfznn 12312 . . . . . . . . . . 11 (𝑥 ∈ (1...(𝑛 + 1)) → 𝑥 ∈ ℕ)
2726adantl 482 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑥 ∈ (1...(𝑛 + 1))) → 𝑥 ∈ ℕ)
2827nnrpd 11814 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑥 ∈ (1...(𝑛 + 1))) → 𝑥 ∈ ℝ+)
2928relogcld 24273 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑥 ∈ (1...(𝑛 + 1))) → (log‘𝑥) ∈ ℝ)
3029recnd 10012 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑥 ∈ (1...(𝑛 + 1))) → (log‘𝑥) ∈ ℂ)
3118, 19, 20, 21, 22, 25, 30telfsum2 14464 . . . . . 6 (𝑛 ∈ ℕ → Σ𝑚 ∈ (1...𝑛)((log‘(𝑚 + 1)) − (log‘𝑚)) = ((log‘(𝑛 + 1)) − (log‘1)))
32 log1 24236 . . . . . . . 8 (log‘1) = 0
3332oveq2i 6615 . . . . . . 7 ((log‘(𝑛 + 1)) − (log‘1)) = ((log‘(𝑛 + 1)) − 0)
3423nnrpd 11814 . . . . . . . . . 10 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℝ+)
3534relogcld 24273 . . . . . . . . 9 (𝑛 ∈ ℕ → (log‘(𝑛 + 1)) ∈ ℝ)
3635recnd 10012 . . . . . . . 8 (𝑛 ∈ ℕ → (log‘(𝑛 + 1)) ∈ ℂ)
3736subid1d 10325 . . . . . . 7 (𝑛 ∈ ℕ → ((log‘(𝑛 + 1)) − 0) = (log‘(𝑛 + 1)))
3833, 37syl5eq 2667 . . . . . 6 (𝑛 ∈ ℕ → ((log‘(𝑛 + 1)) − (log‘1)) = (log‘(𝑛 + 1)))
3917, 31, 383eqtrd 2659 . . . . 5 (𝑛 ∈ ℕ → Σ𝑚 ∈ (1...𝑛)(log‘(1 + (1 / 𝑚))) = (log‘(𝑛 + 1)))
4039oveq2d 6620 . . . 4 (𝑛 ∈ ℕ → (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − Σ𝑚 ∈ (1...𝑛)(log‘(1 + (1 / 𝑚)))) = (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))))
41 fzfid 12712 . . . . . 6 (𝑛 ∈ ℕ → (1...𝑛) ∈ Fin)
422nnrecred 11010 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (1 / 𝑚) ∈ ℝ)
4342recnd 10012 . . . . . 6 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (1 / 𝑚) ∈ ℂ)
44 1rp 11780 . . . . . . . . 9 1 ∈ ℝ+
4514rpreccld 11826 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (1 / 𝑚) ∈ ℝ+)
46 rpaddcl 11798 . . . . . . . . 9 ((1 ∈ ℝ+ ∧ (1 / 𝑚) ∈ ℝ+) → (1 + (1 / 𝑚)) ∈ ℝ+)
4744, 45, 46sylancr 694 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (1 + (1 / 𝑚)) ∈ ℝ+)
4847relogcld 24273 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (log‘(1 + (1 / 𝑚))) ∈ ℝ)
4948recnd 10012 . . . . . 6 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (log‘(1 + (1 / 𝑚))) ∈ ℂ)
5041, 43, 49fsumsub 14448 . . . . 5 (𝑛 ∈ ℕ → Σ𝑚 ∈ (1...𝑛)((1 / 𝑚) − (log‘(1 + (1 / 𝑚)))) = (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − Σ𝑚 ∈ (1...𝑛)(log‘(1 + (1 / 𝑚)))))
51 oveq2 6612 . . . . . . . . 9 (𝑛 = 𝑚 → (1 / 𝑛) = (1 / 𝑚))
5251oveq2d 6620 . . . . . . . . . 10 (𝑛 = 𝑚 → (1 + (1 / 𝑛)) = (1 + (1 / 𝑚)))
5352fveq2d 6152 . . . . . . . . 9 (𝑛 = 𝑚 → (log‘(1 + (1 / 𝑛))) = (log‘(1 + (1 / 𝑚))))
5451, 53oveq12d 6622 . . . . . . . 8 (𝑛 = 𝑚 → ((1 / 𝑛) − (log‘(1 + (1 / 𝑛)))) = ((1 / 𝑚) − (log‘(1 + (1 / 𝑚)))))
55 emcl.4 . . . . . . . 8 𝑇 = (𝑛 ∈ ℕ ↦ ((1 / 𝑛) − (log‘(1 + (1 / 𝑛)))))
56 ovex 6632 . . . . . . . 8 ((1 / 𝑚) − (log‘(1 + (1 / 𝑚)))) ∈ V
5754, 55, 56fvmpt 6239 . . . . . . 7 (𝑚 ∈ ℕ → (𝑇𝑚) = ((1 / 𝑚) − (log‘(1 + (1 / 𝑚)))))
582, 57syl 17 . . . . . 6 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → (𝑇𝑚) = ((1 / 𝑚) − (log‘(1 + (1 / 𝑚)))))
59 id 22 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ)
6059, 24syl6eleq 2708 . . . . . 6 (𝑛 ∈ ℕ → 𝑛 ∈ (ℤ‘1))
6142, 48resubcld 10402 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → ((1 / 𝑚) − (log‘(1 + (1 / 𝑚)))) ∈ ℝ)
6261recnd 10012 . . . . . 6 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ (1...𝑛)) → ((1 / 𝑚) − (log‘(1 + (1 / 𝑚)))) ∈ ℂ)
6358, 60, 62fsumser 14394 . . . . 5 (𝑛 ∈ ℕ → Σ𝑚 ∈ (1...𝑛)((1 / 𝑚) − (log‘(1 + (1 / 𝑚)))) = (seq1( + , 𝑇)‘𝑛))
6450, 63eqtr3d 2657 . . . 4 (𝑛 ∈ ℕ → (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − Σ𝑚 ∈ (1...𝑛)(log‘(1 + (1 / 𝑚)))) = (seq1( + , 𝑇)‘𝑛))
6540, 64eqtr3d 2657 . . 3 (𝑛 ∈ ℕ → (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))) = (seq1( + , 𝑇)‘𝑛))
6665mpteq2ia 4700 . 2 (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1)))) = (𝑛 ∈ ℕ ↦ (seq1( + , 𝑇)‘𝑛))
67 emcl.2 . 2 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))))
68 1z 11351 . . . . 5 1 ∈ ℤ
69 seqfn 12753 . . . . 5 (1 ∈ ℤ → seq1( + , 𝑇) Fn (ℤ‘1))
7068, 69ax-mp 5 . . . 4 seq1( + , 𝑇) Fn (ℤ‘1)
7124fneq2i 5944 . . . 4 (seq1( + , 𝑇) Fn ℕ ↔ seq1( + , 𝑇) Fn (ℤ‘1))
7270, 71mpbir 221 . . 3 seq1( + , 𝑇) Fn ℕ
73 dffn5 6198 . . 3 (seq1( + , 𝑇) Fn ℕ ↔ seq1( + , 𝑇) = (𝑛 ∈ ℕ ↦ (seq1( + , 𝑇)‘𝑛)))
7472, 73mpbi 220 . 2 seq1( + , 𝑇) = (𝑛 ∈ ℕ ↦ (seq1( + , 𝑇)‘𝑛))
7566, 67, 743eqtr4i 2653 1 𝐺 = seq1( + , 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wa 384   = wceq 1480  wcel 1987  cmpt 4673   Fn wfn 5842  cfv 5847  (class class class)co 6604  0cc0 9880  1c1 9881   + caddc 9883  cmin 10210   / cdiv 10628  cn 10964  cz 11321  cuz 11631  +crp 11776  ...cfz 12268  seqcseq 12741  Σcsu 14350  logclog 24205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958  ax-addf 9959  ax-mulf 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-om 7013  df-1st 7113  df-2nd 7114  df-supp 7241  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-ixp 7853  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fsupp 8220  df-fi 8261  df-sup 8292  df-inf 8293  df-oi 8359  df-card 8709  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-ioo 12121  df-ioc 12122  df-ico 12123  df-icc 12124  df-fz 12269  df-fzo 12407  df-fl 12533  df-mod 12609  df-seq 12742  df-exp 12801  df-fac 13001  df-bc 13030  df-hash 13058  df-shft 13741  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-limsup 14136  df-clim 14153  df-rlim 14154  df-sum 14351  df-ef 14723  df-sin 14725  df-cos 14726  df-pi 14728  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-starv 15877  df-sca 15878  df-vsca 15879  df-ip 15880  df-tset 15881  df-ple 15882  df-ds 15885  df-unif 15886  df-hom 15887  df-cco 15888  df-rest 16004  df-topn 16005  df-0g 16023  df-gsum 16024  df-topgen 16025  df-pt 16026  df-prds 16029  df-xrs 16083  df-qtop 16088  df-imas 16089  df-xps 16091  df-mre 16167  df-mrc 16168  df-acs 16170  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-submnd 17257  df-mulg 17462  df-cntz 17671  df-cmn 18116  df-psmet 19657  df-xmet 19658  df-met 19659  df-bl 19660  df-mopn 19661  df-fbas 19662  df-fg 19663  df-cnfld 19666  df-top 20621  df-bases 20622  df-topon 20623  df-topsp 20624  df-cld 20733  df-ntr 20734  df-cls 20735  df-nei 20812  df-lp 20850  df-perf 20851  df-cn 20941  df-cnp 20942  df-haus 21029  df-tx 21275  df-hmeo 21468  df-fil 21560  df-fm 21652  df-flim 21653  df-flf 21654  df-xms 22035  df-ms 22036  df-tms 22037  df-cncf 22589  df-limc 23536  df-dv 23537  df-log 24207
This theorem is referenced by:  emcllem6  24627
  Copyright terms: Public domain W3C validator