MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  emcllem6 Structured version   Visualization version   GIF version

Theorem emcllem6 24926
Description: Lemma for emcl 24928. By the previous lemmas, 𝐹 and 𝐺 must approach a common limit, which is γ by definition. (Contributed by Mario Carneiro, 11-Jul-2014.)
Hypotheses
Ref Expression
emcl.1 𝐹 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛)))
emcl.2 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))))
emcl.3 𝐻 = (𝑛 ∈ ℕ ↦ (log‘(1 + (1 / 𝑛))))
emcl.4 𝑇 = (𝑛 ∈ ℕ ↦ ((1 / 𝑛) − (log‘(1 + (1 / 𝑛)))))
Assertion
Ref Expression
emcllem6 (𝐹 ⇝ γ ∧ 𝐺 ⇝ γ)
Distinct variable groups:   𝑚,𝐻   𝑚,𝑛,𝑇
Allowed substitution hints:   𝐹(𝑚,𝑛)   𝐺(𝑚,𝑛)   𝐻(𝑛)

Proof of Theorem emcllem6
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 11916 . . . . 5 ℕ = (ℤ‘1)
2 1zzd 11600 . . . . 5 (⊤ → 1 ∈ ℤ)
3 oveq2 6821 . . . . . . . . . 10 (𝑛 = 𝑘 → (1 / 𝑛) = (1 / 𝑘))
43oveq2d 6829 . . . . . . . . . . 11 (𝑛 = 𝑘 → (1 + (1 / 𝑛)) = (1 + (1 / 𝑘)))
54fveq2d 6356 . . . . . . . . . 10 (𝑛 = 𝑘 → (log‘(1 + (1 / 𝑛))) = (log‘(1 + (1 / 𝑘))))
63, 5oveq12d 6831 . . . . . . . . 9 (𝑛 = 𝑘 → ((1 / 𝑛) − (log‘(1 + (1 / 𝑛)))) = ((1 / 𝑘) − (log‘(1 + (1 / 𝑘)))))
7 emcl.4 . . . . . . . . 9 𝑇 = (𝑛 ∈ ℕ ↦ ((1 / 𝑛) − (log‘(1 + (1 / 𝑛)))))
8 ovex 6841 . . . . . . . . 9 ((1 / 𝑘) − (log‘(1 + (1 / 𝑘)))) ∈ V
96, 7, 8fvmpt 6444 . . . . . . . 8 (𝑘 ∈ ℕ → (𝑇𝑘) = ((1 / 𝑘) − (log‘(1 + (1 / 𝑘)))))
109adantl 473 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝑇𝑘) = ((1 / 𝑘) − (log‘(1 + (1 / 𝑘)))))
11 nnrecre 11249 . . . . . . . . . 10 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ)
1211adantl 473 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 / 𝑘) ∈ ℝ)
13 1rp 12029 . . . . . . . . . . 11 1 ∈ ℝ+
14 nnrp 12035 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ+)
1514rpreccld 12075 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ+)
1615adantl 473 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 / 𝑘) ∈ ℝ+)
17 rpaddcl 12047 . . . . . . . . . . 11 ((1 ∈ ℝ+ ∧ (1 / 𝑘) ∈ ℝ+) → (1 + (1 / 𝑘)) ∈ ℝ+)
1813, 16, 17sylancr 698 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 + (1 / 𝑘)) ∈ ℝ+)
1918relogcld 24568 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → (log‘(1 + (1 / 𝑘))) ∈ ℝ)
2012, 19resubcld 10650 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ) → ((1 / 𝑘) − (log‘(1 + (1 / 𝑘)))) ∈ ℝ)
2120recnd 10260 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → ((1 / 𝑘) − (log‘(1 + (1 / 𝑘)))) ∈ ℂ)
22 emcl.1 . . . . . . . . . 10 𝐹 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛)))
23 emcl.2 . . . . . . . . . 10 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))))
24 emcl.3 . . . . . . . . . 10 𝐻 = (𝑛 ∈ ℕ ↦ (log‘(1 + (1 / 𝑛))))
2522, 23, 24, 7emcllem5 24925 . . . . . . . . 9 𝐺 = seq1( + , 𝑇)
2622, 23emcllem1 24921 . . . . . . . . . . . 12 (𝐹:ℕ⟶ℝ ∧ 𝐺:ℕ⟶ℝ)
2726simpri 481 . . . . . . . . . . 11 𝐺:ℕ⟶ℝ
2827a1i 11 . . . . . . . . . 10 (⊤ → 𝐺:ℕ⟶ℝ)
2922, 23emcllem2 24922 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → ((𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘) ∧ (𝐺𝑘) ≤ (𝐺‘(𝑘 + 1))))
3029simprd 482 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (𝐺𝑘) ≤ (𝐺‘(𝑘 + 1)))
3130adantl 473 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ≤ (𝐺‘(𝑘 + 1)))
32 1nn 11223 . . . . . . . . . . . 12 1 ∈ ℕ
3326simpli 476 . . . . . . . . . . . . 13 𝐹:ℕ⟶ℝ
3433ffvelrni 6521 . . . . . . . . . . . 12 (1 ∈ ℕ → (𝐹‘1) ∈ ℝ)
3532, 34ax-mp 5 . . . . . . . . . . 11 (𝐹‘1) ∈ ℝ
3627ffvelrni 6521 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (𝐺𝑘) ∈ ℝ)
3736adantl 473 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℝ)
3833ffvelrni 6521 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (𝐹𝑘) ∈ ℝ)
3938adantl 473 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
4035a1i 11 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹‘1) ∈ ℝ)
41 fvex 6362 . . . . . . . . . . . . . . . . . . 19 (log‘(1 + (1 / 𝑘))) ∈ V
425, 24, 41fvmpt 6444 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → (𝐻𝑘) = (log‘(1 + (1 / 𝑘))))
4342adantl 473 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐻𝑘) = (log‘(1 + (1 / 𝑘))))
4422, 23, 24emcllem3 24923 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → (𝐻𝑘) = ((𝐹𝑘) − (𝐺𝑘)))
4544adantl 473 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐻𝑘) = ((𝐹𝑘) − (𝐺𝑘)))
4643, 45eqtr3d 2796 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑘 ∈ ℕ) → (log‘(1 + (1 / 𝑘))) = ((𝐹𝑘) − (𝐺𝑘)))
47 1re 10231 . . . . . . . . . . . . . . . . . 18 1 ∈ ℝ
48 readdcl 10211 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℝ ∧ (1 / 𝑘) ∈ ℝ) → (1 + (1 / 𝑘)) ∈ ℝ)
4947, 12, 48sylancr 698 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 + (1 / 𝑘)) ∈ ℝ)
50 ltaddrp 12060 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℝ ∧ (1 / 𝑘) ∈ ℝ+) → 1 < (1 + (1 / 𝑘)))
5147, 16, 50sylancr 698 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑘 ∈ ℕ) → 1 < (1 + (1 / 𝑘)))
5249, 51rplogcld 24574 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑘 ∈ ℕ) → (log‘(1 + (1 / 𝑘))) ∈ ℝ+)
5346, 52eqeltrrd 2840 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝐹𝑘) − (𝐺𝑘)) ∈ ℝ+)
5453rpge0d 12069 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ) → 0 ≤ ((𝐹𝑘) − (𝐺𝑘)))
5539, 37subge0d 10809 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ) → (0 ≤ ((𝐹𝑘) − (𝐺𝑘)) ↔ (𝐺𝑘) ≤ (𝐹𝑘)))
5654, 55mpbid 222 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ≤ (𝐹𝑘))
57 fveq2 6352 . . . . . . . . . . . . . . . 16 (𝑥 = 1 → (𝐹𝑥) = (𝐹‘1))
5857breq1d 4814 . . . . . . . . . . . . . . 15 (𝑥 = 1 → ((𝐹𝑥) ≤ (𝐹‘1) ↔ (𝐹‘1) ≤ (𝐹‘1)))
59 fveq2 6352 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑘 → (𝐹𝑥) = (𝐹𝑘))
6059breq1d 4814 . . . . . . . . . . . . . . 15 (𝑥 = 𝑘 → ((𝐹𝑥) ≤ (𝐹‘1) ↔ (𝐹𝑘) ≤ (𝐹‘1)))
61 fveq2 6352 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑘 + 1) → (𝐹𝑥) = (𝐹‘(𝑘 + 1)))
6261breq1d 4814 . . . . . . . . . . . . . . 15 (𝑥 = (𝑘 + 1) → ((𝐹𝑥) ≤ (𝐹‘1) ↔ (𝐹‘(𝑘 + 1)) ≤ (𝐹‘1)))
6335leidi 10754 . . . . . . . . . . . . . . 15 (𝐹‘1) ≤ (𝐹‘1)
6429simpld 477 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
65 peano2nn 11224 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
6633ffvelrni 6521 . . . . . . . . . . . . . . . . . 18 ((𝑘 + 1) ∈ ℕ → (𝐹‘(𝑘 + 1)) ∈ ℝ)
6765, 66syl 17 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → (𝐹‘(𝑘 + 1)) ∈ ℝ)
6835a1i 11 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → (𝐹‘1) ∈ ℝ)
69 letr 10323 . . . . . . . . . . . . . . . . 17 (((𝐹‘(𝑘 + 1)) ∈ ℝ ∧ (𝐹𝑘) ∈ ℝ ∧ (𝐹‘1) ∈ ℝ) → (((𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘) ∧ (𝐹𝑘) ≤ (𝐹‘1)) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘1)))
7067, 38, 68, 69syl3anc 1477 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → (((𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘) ∧ (𝐹𝑘) ≤ (𝐹‘1)) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘1)))
7164, 70mpand 713 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → ((𝐹𝑘) ≤ (𝐹‘1) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘1)))
7258, 60, 62, 60, 63, 71nnind 11230 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (𝐹𝑘) ≤ (𝐹‘1))
7372adantl 473 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ≤ (𝐹‘1))
7437, 39, 40, 56, 73letrd 10386 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ≤ (𝐹‘1))
7574ralrimiva 3104 . . . . . . . . . . 11 (⊤ → ∀𝑘 ∈ ℕ (𝐺𝑘) ≤ (𝐹‘1))
76 breq2 4808 . . . . . . . . . . . . 13 (𝑥 = (𝐹‘1) → ((𝐺𝑘) ≤ 𝑥 ↔ (𝐺𝑘) ≤ (𝐹‘1)))
7776ralbidv 3124 . . . . . . . . . . . 12 (𝑥 = (𝐹‘1) → (∀𝑘 ∈ ℕ (𝐺𝑘) ≤ 𝑥 ↔ ∀𝑘 ∈ ℕ (𝐺𝑘) ≤ (𝐹‘1)))
7877rspcev 3449 . . . . . . . . . . 11 (((𝐹‘1) ∈ ℝ ∧ ∀𝑘 ∈ ℕ (𝐺𝑘) ≤ (𝐹‘1)) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (𝐺𝑘) ≤ 𝑥)
7935, 75, 78sylancr 698 . . . . . . . . . 10 (⊤ → ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (𝐺𝑘) ≤ 𝑥)
801, 2, 28, 31, 79climsup 14599 . . . . . . . . 9 (⊤ → 𝐺 ⇝ sup(ran 𝐺, ℝ, < ))
8125, 80syl5eqbrr 4840 . . . . . . . 8 (⊤ → seq1( + , 𝑇) ⇝ sup(ran 𝐺, ℝ, < ))
82 climrel 14422 . . . . . . . . 9 Rel ⇝
8382releldmi 5517 . . . . . . . 8 (seq1( + , 𝑇) ⇝ sup(ran 𝐺, ℝ, < ) → seq1( + , 𝑇) ∈ dom ⇝ )
8481, 83syl 17 . . . . . . 7 (⊤ → seq1( + , 𝑇) ∈ dom ⇝ )
851, 2, 10, 21, 84isumclim2 14688 . . . . . 6 (⊤ → seq1( + , 𝑇) ⇝ Σ𝑘 ∈ ℕ ((1 / 𝑘) − (log‘(1 + (1 / 𝑘)))))
86 df-em 24918 . . . . . 6 γ = Σ𝑘 ∈ ℕ ((1 / 𝑘) − (log‘(1 + (1 / 𝑘))))
8785, 25, 863brtr4g 4838 . . . . 5 (⊤ → 𝐺 ⇝ γ)
88 nnex 11218 . . . . . . . 8 ℕ ∈ V
8988mptex 6650 . . . . . . 7 (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛))) ∈ V
9022, 89eqeltri 2835 . . . . . 6 𝐹 ∈ V
9190a1i 11 . . . . 5 (⊤ → 𝐹 ∈ V)
9222, 23, 24emcllem4 24924 . . . . . 6 𝐻 ⇝ 0
9392a1i 11 . . . . 5 (⊤ → 𝐻 ⇝ 0)
9437recnd 10260 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℂ)
9539, 37resubcld 10650 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝐹𝑘) − (𝐺𝑘)) ∈ ℝ)
9645, 95eqeltrd 2839 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐻𝑘) ∈ ℝ)
9796recnd 10260 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐻𝑘) ∈ ℂ)
9845oveq2d 6829 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝐺𝑘) + (𝐻𝑘)) = ((𝐺𝑘) + ((𝐹𝑘) − (𝐺𝑘))))
9939recnd 10260 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
10094, 99pncan3d 10587 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝐺𝑘) + ((𝐹𝑘) − (𝐺𝑘))) = (𝐹𝑘))
10198, 100eqtr2d 2795 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = ((𝐺𝑘) + (𝐻𝑘)))
1021, 2, 87, 91, 93, 94, 97, 101climadd 14561 . . . 4 (⊤ → 𝐹 ⇝ (γ + 0))
10387trud 1642 . . . . . 6 𝐺 ⇝ γ
104 climcl 14429 . . . . . 6 (𝐺 ⇝ γ → γ ∈ ℂ)
105103, 104ax-mp 5 . . . . 5 γ ∈ ℂ
106105addid1i 10415 . . . 4 (γ + 0) = γ
107102, 106syl6breq 4845 . . 3 (⊤ → 𝐹 ⇝ γ)
108107trud 1642 . 2 𝐹 ⇝ γ
109108, 103pm3.2i 470 1 (𝐹 ⇝ γ ∧ 𝐺 ⇝ γ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wtru 1633  wcel 2139  wral 3050  wrex 3051  Vcvv 3340   class class class wbr 4804  cmpt 4881  dom cdm 5266  ran crn 5267  wf 6045  cfv 6049  (class class class)co 6813  supcsup 8511  cc 10126  cr 10127  0cc0 10128  1c1 10129   + caddc 10131   < clt 10266  cle 10267  cmin 10458   / cdiv 10876  cn 11212  +crp 12025  ...cfz 12519  seqcseq 12995  cli 14414  Σcsu 14615  logclog 24500  γcem 24917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206  ax-addf 10207  ax-mulf 10208
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-of 7062  df-om 7231  df-1st 7333  df-2nd 7334  df-supp 7464  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-2o 7730  df-oadd 7733  df-er 7911  df-map 8025  df-pm 8026  df-ixp 8075  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-fsupp 8441  df-fi 8482  df-sup 8513  df-inf 8514  df-oi 8580  df-card 8955  df-cda 9182  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-z 11570  df-dec 11686  df-uz 11880  df-q 11982  df-rp 12026  df-xneg 12139  df-xadd 12140  df-xmul 12141  df-ioo 12372  df-ioc 12373  df-ico 12374  df-icc 12375  df-fz 12520  df-fzo 12660  df-fl 12787  df-mod 12863  df-seq 12996  df-exp 13055  df-fac 13255  df-bc 13284  df-hash 13312  df-shft 14006  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-limsup 14401  df-clim 14418  df-rlim 14419  df-sum 14616  df-ef 14997  df-sin 14999  df-cos 15000  df-pi 15002  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-mulr 16157  df-starv 16158  df-sca 16159  df-vsca 16160  df-ip 16161  df-tset 16162  df-ple 16163  df-ds 16166  df-unif 16167  df-hom 16168  df-cco 16169  df-rest 16285  df-topn 16286  df-0g 16304  df-gsum 16305  df-topgen 16306  df-pt 16307  df-prds 16310  df-xrs 16364  df-qtop 16369  df-imas 16370  df-xps 16372  df-mre 16448  df-mrc 16449  df-acs 16451  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-submnd 17537  df-mulg 17742  df-cntz 17950  df-cmn 18395  df-psmet 19940  df-xmet 19941  df-met 19942  df-bl 19943  df-mopn 19944  df-fbas 19945  df-fg 19946  df-cnfld 19949  df-top 20901  df-topon 20918  df-topsp 20939  df-bases 20952  df-cld 21025  df-ntr 21026  df-cls 21027  df-nei 21104  df-lp 21142  df-perf 21143  df-cn 21233  df-cnp 21234  df-haus 21321  df-tx 21567  df-hmeo 21760  df-fil 21851  df-fm 21943  df-flim 21944  df-flf 21945  df-xms 22326  df-ms 22327  df-tms 22328  df-cncf 22882  df-limc 23829  df-dv 23830  df-log 24502  df-em 24918
This theorem is referenced by:  emcllem7  24927
  Copyright terms: Public domain W3C validator